diff options
Diffstat (limited to 'vendor/jpeg-decoder/src/decoder.rs')
-rw-r--r-- | vendor/jpeg-decoder/src/decoder.rs | 1493 |
1 files changed, 0 insertions, 1493 deletions
diff --git a/vendor/jpeg-decoder/src/decoder.rs b/vendor/jpeg-decoder/src/decoder.rs deleted file mode 100644 index 795ad1e..0000000 --- a/vendor/jpeg-decoder/src/decoder.rs +++ /dev/null @@ -1,1493 +0,0 @@ -use crate::error::{Error, Result, UnsupportedFeature}; -use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable}; -use crate::marker::Marker; -use crate::parser::{ - parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, - AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo, - IccChunk, ScanInfo, -}; -use crate::read_u8; -use crate::upsampler::Upsampler; -use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope}; -use alloc::borrow::ToOwned; -use alloc::sync::Arc; -use alloc::vec::Vec; -use alloc::{format, vec}; -use core::cmp; -use core::mem; -use core::ops::Range; -use std::convert::TryInto; -use std::io::Read; - -pub const MAX_COMPONENTS: usize = 4; - -mod lossless; -use self::lossless::compute_image_lossless; - -#[cfg_attr(rustfmt, rustfmt_skip)] -static UNZIGZAG: [u8; 64] = [ - 0, 1, 8, 16, 9, 2, 3, 10, - 17, 24, 32, 25, 18, 11, 4, 5, - 12, 19, 26, 33, 40, 48, 41, 34, - 27, 20, 13, 6, 7, 14, 21, 28, - 35, 42, 49, 56, 57, 50, 43, 36, - 29, 22, 15, 23, 30, 37, 44, 51, - 58, 59, 52, 45, 38, 31, 39, 46, - 53, 60, 61, 54, 47, 55, 62, 63, -]; - -/// An enumeration over combinations of color spaces and bit depths a pixel can have. -#[derive(Clone, Copy, Debug, PartialEq)] -pub enum PixelFormat { - /// Luminance (grayscale), 8 bits - L8, - /// Luminance (grayscale), 16 bits - L16, - /// RGB, 8 bits per channel - RGB24, - /// CMYK, 8 bits per channel - CMYK32, -} - -impl PixelFormat { - /// Determine the size in bytes of each pixel in this format - pub fn pixel_bytes(&self) -> usize { - match self { - PixelFormat::L8 => 1, - PixelFormat::L16 => 2, - PixelFormat::RGB24 => 3, - PixelFormat::CMYK32 => 4, - } - } -} - -/// Represents metadata of an image. -#[derive(Clone, Copy, Debug, PartialEq)] -pub struct ImageInfo { - /// The width of the image, in pixels. - pub width: u16, - /// The height of the image, in pixels. - pub height: u16, - /// The pixel format of the image. - pub pixel_format: PixelFormat, - /// The coding process of the image. - pub coding_process: CodingProcess, -} - -/// Describes the colour transform to apply before binary data is returned -#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] -#[non_exhaustive] -pub enum ColorTransform { - /// No transform should be applied and the data is returned as-is. - None, - /// Unknown colour transformation - Unknown, - /// Grayscale transform should be applied (expects 1 channel) - Grayscale, - /// RGB transform should be applied. - RGB, - /// YCbCr transform should be applied. - YCbCr, - /// CMYK transform should be applied. - CMYK, - /// YCCK transform should be applied. - YCCK, - /// big gamut Y/Cb/Cr, bg-sYCC - JcsBgYcc, - /// big gamut red/green/blue, bg-sRGB - JcsBgRgb, -} - -/// JPEG decoder -pub struct Decoder<R> { - reader: R, - - frame: Option<FrameInfo>, - dc_huffman_tables: Vec<Option<HuffmanTable>>, - ac_huffman_tables: Vec<Option<HuffmanTable>>, - quantization_tables: [Option<Arc<[u16; 64]>>; 4], - - restart_interval: u16, - - adobe_color_transform: Option<AdobeColorTransform>, - color_transform: Option<ColorTransform>, - - is_jfif: bool, - is_mjpeg: bool, - - icc_markers: Vec<IccChunk>, - - exif_data: Option<Vec<u8>>, - - // Used for progressive JPEGs. - coefficients: Vec<Vec<i16>>, - // Bitmask of which coefficients has been completely decoded. - coefficients_finished: [u64; MAX_COMPONENTS], - - // Maximum allowed size of decoded image buffer - decoding_buffer_size_limit: usize, -} - -impl<R: Read> Decoder<R> { - /// Creates a new `Decoder` using the reader `reader`. - pub fn new(reader: R) -> Decoder<R> { - Decoder { - reader, - frame: None, - dc_huffman_tables: vec![None, None, None, None], - ac_huffman_tables: vec![None, None, None, None], - quantization_tables: [None, None, None, None], - restart_interval: 0, - adobe_color_transform: None, - color_transform: None, - is_jfif: false, - is_mjpeg: false, - icc_markers: Vec::new(), - exif_data: None, - coefficients: Vec::new(), - coefficients_finished: [0; MAX_COMPONENTS], - decoding_buffer_size_limit: usize::MAX, - } - } - - /// Colour transform to use when decoding the image. App segments relating to colour transforms - /// will be ignored. - pub fn set_color_transform(&mut self, transform: ColorTransform) { - self.color_transform = Some(transform); - } - - /// Set maximum buffer size allowed for decoded images - pub fn set_max_decoding_buffer_size(&mut self, max: usize) { - self.decoding_buffer_size_limit = max; - } - - /// Returns metadata about the image. - /// - /// The returned value will be `None` until a call to either `read_info` or `decode` has - /// returned `Ok`. - pub fn info(&self) -> Option<ImageInfo> { - match self.frame { - Some(ref frame) => { - let pixel_format = match frame.components.len() { - 1 => match frame.precision { - 8 => PixelFormat::L8, - 16 => PixelFormat::L16, - _ => panic!(), - }, - 3 => PixelFormat::RGB24, - 4 => PixelFormat::CMYK32, - _ => panic!(), - }; - - Some(ImageInfo { - width: frame.output_size.width, - height: frame.output_size.height, - pixel_format, - coding_process: frame.coding_process, - }) - } - None => None, - } - } - - /// Returns raw exif data, starting at the TIFF header, if the image contains any. - /// - /// The returned value will be `None` until a call to `decode` has returned `Ok`. - pub fn exif_data(&self) -> Option<&[u8]> { - self.exif_data.as_deref() - } - - /// Returns the embeded icc profile if the image contains one. - pub fn icc_profile(&self) -> Option<Vec<u8>> { - let mut marker_present: [Option<&IccChunk>; 256] = [None; 256]; - let num_markers = self.icc_markers.len(); - if num_markers == 0 || num_markers >= 255 { - return None; - } - // check the validity of the markers - for chunk in &self.icc_markers { - if usize::from(chunk.num_markers) != num_markers { - // all the lengths must match - return None; - } - if chunk.seq_no == 0 { - return None; - } - if marker_present[usize::from(chunk.seq_no)].is_some() { - // duplicate seq_no - return None; - } else { - marker_present[usize::from(chunk.seq_no)] = Some(chunk); - } - } - - // assemble them together by seq_no failing if any are missing - let mut data = Vec::new(); - // seq_no's start at 1 - for &chunk in marker_present.get(1..=num_markers)? { - data.extend_from_slice(&chunk?.data); - } - Some(data) - } - - /// Heuristic to avoid starting thread, synchronization if we expect a small amount of - /// parallelism to be utilized. - fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind { - const PARALLELISM_THRESHOLD: u64 = 128 * 128; - - match worker_preference { - PreferWorkerKind::Immediate => PreferWorkerKind::Immediate, - PreferWorkerKind::Multithreaded => { - let width: u64 = frame.output_size.width.into(); - let height: u64 = frame.output_size.width.into(); - if width * height > PARALLELISM_THRESHOLD { - PreferWorkerKind::Multithreaded - } else { - PreferWorkerKind::Immediate - } - } - } - } - - /// Tries to read metadata from the image without decoding it. - /// - /// If successful, the metadata can be obtained using the `info` method. - pub fn read_info(&mut self) -> Result<()> { - WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ()) - } - - /// Configure the decoder to scale the image during decoding. - /// - /// This efficiently scales the image by the smallest supported scale - /// factor that produces an image larger than or equal to the requested - /// size in at least one axis. The currently implemented scale factors - /// are 1/8, 1/4, 1/2 and 1. - /// - /// To generate a thumbnail of an exact size, pass the desired size and - /// then scale to the final size using a traditional resampling algorithm. - pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> { - self.read_info()?; - let frame = self.frame.as_mut().unwrap(); - let idct_size = crate::idct::choose_idct_size( - frame.image_size, - Dimensions { - width: requested_width, - height: requested_height, - }, - ); - frame.update_idct_size(idct_size)?; - Ok((frame.output_size.width, frame.output_size.height)) - } - - /// Decodes the image and returns the decoded pixels if successful. - pub fn decode(&mut self) -> Result<Vec<u8>> { - WorkerScope::with(|worker| self.decode_internal(false, worker)) - } - - fn decode_internal( - &mut self, - stop_after_metadata: bool, - worker_scope: &WorkerScope, - ) -> Result<Vec<u8>> { - if stop_after_metadata && self.frame.is_some() { - // The metadata has already been read. - return Ok(Vec::new()); - } else if self.frame.is_none() - && (read_u8(&mut self.reader)? != 0xFF - || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) - { - return Err(Error::Format( - "first two bytes are not an SOI marker".to_owned(), - )); - } - - let mut previous_marker = Marker::SOI; - let mut pending_marker = None; - let mut scans_processed = 0; - let mut planes = vec![ - Vec::<u8>::new(); - self.frame - .as_ref() - .map_or(0, |frame| frame.components.len()) - ]; - let mut planes_u16 = vec![ - Vec::<u16>::new(); - self.frame - .as_ref() - .map_or(0, |frame| frame.components.len()) - ]; - - loop { - let marker = match pending_marker.take() { - Some(m) => m, - None => self.read_marker()?, - }; - - match marker { - // Frame header - Marker::SOF(..) => { - // Section 4.10 - // "An image contains only one frame in the cases of sequential and - // progressive coding processes; an image contains multiple frames for the - // hierarchical mode." - if self.frame.is_some() { - return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)); - } - - let frame = parse_sof(&mut self.reader, marker)?; - let component_count = frame.components.len(); - - if frame.is_differential { - return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)); - } - if frame.entropy_coding == EntropyCoding::Arithmetic { - return Err(Error::Unsupported( - UnsupportedFeature::ArithmeticEntropyCoding, - )); - } - if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless { - return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision( - frame.precision, - ))); - } - if frame.precision != 8 && frame.precision != 16 { - return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision( - frame.precision, - ))); - } - if component_count != 1 && component_count != 3 && component_count != 4 { - return Err(Error::Unsupported(UnsupportedFeature::ComponentCount( - component_count as u8, - ))); - } - - // Make sure we support the subsampling ratios used. - let _ = Upsampler::new( - &frame.components, - frame.image_size.width, - frame.image_size.height, - )?; - - self.frame = Some(frame); - - if stop_after_metadata { - return Ok(Vec::new()); - } - - planes = vec![Vec::new(); component_count]; - planes_u16 = vec![Vec::new(); component_count]; - } - - // Scan header - Marker::SOS => { - if self.frame.is_none() { - return Err(Error::Format("scan encountered before frame".to_owned())); - } - - let frame = self.frame.clone().unwrap(); - let scan = parse_sos(&mut self.reader, &frame)?; - - if frame.coding_process == CodingProcess::DctProgressive - && self.coefficients.is_empty() - { - self.coefficients = frame - .components - .iter() - .map(|c| { - let block_count = - c.block_size.width as usize * c.block_size.height as usize; - vec![0; block_count * 64] - }) - .collect(); - } - - if frame.coding_process == CodingProcess::Lossless { - let (marker, data) = self.decode_scan_lossless(&frame, &scan)?; - - for (i, plane) in data - .into_iter() - .enumerate() - .filter(|&(_, ref plane)| !plane.is_empty()) - { - planes_u16[i] = plane; - } - pending_marker = marker; - } else { - // This was previously buggy, so let's explain the log here a bit. When a - // progressive frame is encoded then the coefficients (DC, AC) of each - // component (=color plane) can be split amongst scans. In particular it can - // happen or at least occurs in the wild that a scan contains coefficient 0 of - // all components. If now one but not all components had all other coefficients - // delivered in previous scans then such a scan contains all components but - // completes only some of them! (This is technically NOT permitted for all - // other coefficients as the standard dictates that scans with coefficients - // other than the 0th must only contain ONE component so we would either - // complete it or not. We may want to detect and error in case more component - // are part of a scan than allowed.) What a weird edge case. - // - // But this means we track precisely which components get completed here. - let mut finished = [false; MAX_COMPONENTS]; - - if scan.successive_approximation_low == 0 { - for (&i, component_finished) in - scan.component_indices.iter().zip(&mut finished) - { - if self.coefficients_finished[i] == !0 { - continue; - } - for j in scan.spectral_selection.clone() { - self.coefficients_finished[i] |= 1 << j; - } - if self.coefficients_finished[i] == !0 { - *component_finished = true; - } - } - } - - let preference = - Self::select_worker(&frame, PreferWorkerKind::Multithreaded); - - let (marker, data) = worker_scope - .get_or_init_worker(preference, |worker| { - self.decode_scan(&frame, &scan, worker, &finished) - })?; - - if let Some(data) = data { - for (i, plane) in data - .into_iter() - .enumerate() - .filter(|&(_, ref plane)| !plane.is_empty()) - { - if self.coefficients_finished[i] == !0 { - planes[i] = plane; - } - } - } - - pending_marker = marker; - } - - scans_processed += 1; - } - - // Table-specification and miscellaneous markers - // Quantization table-specification - Marker::DQT => { - let tables = parse_dqt(&mut self.reader)?; - - for (i, &table) in tables.iter().enumerate() { - if let Some(table) = table { - let mut unzigzagged_table = [0u16; 64]; - - for j in 0..64 { - unzigzagged_table[UNZIGZAG[j] as usize] = table[j]; - } - - self.quantization_tables[i] = Some(Arc::new(unzigzagged_table)); - } - } - } - // Huffman table-specification - Marker::DHT => { - let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline); - let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?; - - let current_dc_tables = mem::take(&mut self.dc_huffman_tables); - self.dc_huffman_tables = dc_tables - .into_iter() - .zip(current_dc_tables.into_iter()) - .map(|(a, b)| a.or(b)) - .collect(); - - let current_ac_tables = mem::take(&mut self.ac_huffman_tables); - self.ac_huffman_tables = ac_tables - .into_iter() - .zip(current_ac_tables.into_iter()) - .map(|(a, b)| a.or(b)) - .collect(); - } - // Arithmetic conditioning table-specification - Marker::DAC => { - return Err(Error::Unsupported( - UnsupportedFeature::ArithmeticEntropyCoding, - )) - } - // Restart interval definition - Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?, - // Comment - Marker::COM => { - let _comment = parse_com(&mut self.reader)?; - } - // Application data - Marker::APP(..) => { - if let Some(data) = parse_app(&mut self.reader, marker)? { - match data { - AppData::Adobe(color_transform) => { - self.adobe_color_transform = Some(color_transform) - } - AppData::Jfif => { - // From the JFIF spec: - // "The APP0 marker is used to identify a JPEG FIF file. - // The JPEG FIF APP0 marker is mandatory right after the SOI marker." - // Some JPEGs in the wild does not follow this though, so we allow - // JFIF headers anywhere APP0 markers are allowed. - /* - if previous_marker != Marker::SOI { - return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned())); - } - */ - - self.is_jfif = true; - } - AppData::Avi1 => self.is_mjpeg = true, - AppData::Icc(icc) => self.icc_markers.push(icc), - AppData::Exif(data) => self.exif_data = Some(data), - } - } - } - // Restart - Marker::RST(..) => { - // Some encoders emit a final RST marker after entropy-coded data, which - // decode_scan does not take care of. So if we encounter one, we ignore it. - if previous_marker != Marker::SOS { - return Err(Error::Format( - "RST found outside of entropy-coded data".to_owned(), - )); - } - } - - // Define number of lines - Marker::DNL => { - // Section B.2.1 - // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan." - if previous_marker != Marker::SOS || scans_processed != 1 { - return Err(Error::Format( - "DNL is only allowed immediately after the first scan".to_owned(), - )); - } - - return Err(Error::Unsupported(UnsupportedFeature::DNL)); - } - - // Hierarchical mode markers - Marker::DHP | Marker::EXP => { - return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)) - } - - // End of image - Marker::EOI => break, - - _ => { - return Err(Error::Format(format!( - "{:?} marker found where not allowed", - marker - ))) - } - } - - previous_marker = marker; - } - - if self.frame.is_none() { - return Err(Error::Format( - "end of image encountered before frame".to_owned(), - )); - } - - let frame = self.frame.as_ref().unwrap(); - let preference = Self::select_worker(&frame, PreferWorkerKind::Multithreaded); - - worker_scope.get_or_init_worker(preference, |worker| { - self.decode_planes(worker, planes, planes_u16) - }) - } - - fn decode_planes( - &mut self, - worker: &mut dyn Worker, - mut planes: Vec<Vec<u8>>, - planes_u16: Vec<Vec<u16>>, - ) -> Result<Vec<u8>> { - if self.frame.is_none() { - return Err(Error::Format( - "end of image encountered before frame".to_owned(), - )); - } - - let frame = self.frame.as_ref().unwrap(); - - if { - let required_mem = frame - .components - .len() - .checked_mul(frame.output_size.width.into()) - .and_then(|m| m.checked_mul(frame.output_size.height.into())); - required_mem.map_or(true, |m| self.decoding_buffer_size_limit < m) - } { - return Err(Error::Format( - "size of decoded image exceeds maximum allowed size".to_owned(), - )); - } - - // If we're decoding a progressive jpeg and a component is unfinished, render what we've got - if frame.coding_process == CodingProcess::DctProgressive - && self.coefficients.len() == frame.components.len() - { - for (i, component) in frame.components.iter().enumerate() { - // Only dealing with unfinished components - if self.coefficients_finished[i] == !0 { - continue; - } - - let quantization_table = - match self.quantization_tables[component.quantization_table_index].clone() { - Some(quantization_table) => quantization_table, - None => continue, - }; - - // Get the worker prepared - let row_data = RowData { - index: i, - component: component.clone(), - quantization_table, - }; - worker.start(row_data)?; - - // Send the rows over to the worker and collect the result - let coefficients_per_mcu_row = usize::from(component.block_size.width) - * usize::from(component.vertical_sampling_factor) - * 64; - - let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| { - let offset = usize::from(mcu_y) * coefficients_per_mcu_row; - let row_coefficients = - self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec(); - (i, row_coefficients) - }); - - // FIXME: additional potential work stealing opportunities for rayon case if we - // also internally can parallelize over components. - worker.append_rows(&mut tasks)?; - planes[i] = worker.get_result(i)?; - } - } - - if frame.coding_process == CodingProcess::Lossless { - compute_image_lossless(frame, planes_u16) - } else { - compute_image( - &frame.components, - planes, - frame.output_size, - self.determine_color_transform(), - ) - } - } - - fn determine_color_transform(&self) -> ColorTransform { - if let Some(color_transform) = self.color_transform { - return color_transform; - } - - let frame = self.frame.as_ref().unwrap(); - - if frame.components.len() == 1 { - return ColorTransform::Grayscale; - } - - // Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/ - - if frame.components.len() == 3 { - match ( - frame.components[0].identifier, - frame.components[1].identifier, - frame.components[2].identifier, - ) { - (1, 2, 3) => { - return ColorTransform::YCbCr; - } - (1, 34, 35) => { - return ColorTransform::JcsBgYcc; - } - (82, 71, 66) => { - return ColorTransform::RGB; - } - (114, 103, 98) => { - return ColorTransform::JcsBgRgb; - } - _ => {} - } - - if self.is_jfif { - return ColorTransform::YCbCr; - } - } - - if let Some(colour_transform) = self.adobe_color_transform { - match colour_transform { - AdobeColorTransform::Unknown => { - if frame.components.len() == 3 { - return ColorTransform::RGB; - } else if frame.components.len() == 4 { - return ColorTransform::CMYK; - } - } - AdobeColorTransform::YCbCr => { - return ColorTransform::YCbCr; - } - AdobeColorTransform::YCCK => { - return ColorTransform::YCCK; - } - } - } else if frame.components.len() == 4 { - return ColorTransform::CMYK; - } - - if frame.components.len() == 4 { - ColorTransform::YCCK - } else if frame.components.len() == 3 { - ColorTransform::YCbCr - } else { - ColorTransform::Unknown - } - } - - fn read_marker(&mut self) -> Result<Marker> { - loop { - // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments. - // libjpeg allows this though and there are images in the wild utilising it, so we are - // forced to support this behavior. - // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs. - while read_u8(&mut self.reader)? != 0xFF {} - - // Section B.1.1.2 - // All markers are assigned two-byte codes: an X’FF’ byte followed by a - // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may - // optionally be preceded by any number of fill bytes, which are bytes - // assigned code X’FF’. - let mut byte = read_u8(&mut self.reader)?; - - // Section B.1.1.2 - // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’." - while byte == 0xFF { - byte = read_u8(&mut self.reader)?; - } - - if byte != 0x00 && byte != 0xFF { - return Ok(Marker::from_u8(byte).unwrap()); - } - } - } - - fn decode_scan( - &mut self, - frame: &FrameInfo, - scan: &ScanInfo, - worker: &mut dyn Worker, - finished: &[bool; MAX_COMPONENTS], - ) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> { - assert!(scan.component_indices.len() <= MAX_COMPONENTS); - - let components: Vec<Component> = scan - .component_indices - .iter() - .map(|&i| frame.components[i].clone()) - .collect(); - - // Verify that all required quantization tables has been set. - if components - .iter() - .any(|component| self.quantization_tables[component.quantization_table_index].is_none()) - { - return Err(Error::Format("use of unset quantization table".to_owned())); - } - - if self.is_mjpeg { - fill_default_mjpeg_tables( - scan, - &mut self.dc_huffman_tables, - &mut self.ac_huffman_tables, - ); - } - - // Verify that all required huffman tables has been set. - if scan.spectral_selection.start == 0 - && scan - .dc_table_indices - .iter() - .any(|&i| self.dc_huffman_tables[i].is_none()) - { - return Err(Error::Format( - "scan makes use of unset dc huffman table".to_owned(), - )); - } - if scan.spectral_selection.end > 1 - && scan - .ac_table_indices - .iter() - .any(|&i| self.ac_huffman_tables[i].is_none()) - { - return Err(Error::Format( - "scan makes use of unset ac huffman table".to_owned(), - )); - } - - // Prepare the worker thread for the work to come. - for (i, component) in components.iter().enumerate() { - if finished[i] { - let row_data = RowData { - index: i, - component: component.clone(), - quantization_table: self.quantization_tables - [component.quantization_table_index] - .clone() - .unwrap(), - }; - - worker.start(row_data)?; - } - } - - let is_progressive = frame.coding_process == CodingProcess::DctProgressive; - let is_interleaved = components.len() > 1; - let mut dummy_block = [0i16; 64]; - let mut huffman = HuffmanDecoder::new(); - let mut dc_predictors = [0i16; MAX_COMPONENTS]; - let mut mcus_left_until_restart = self.restart_interval; - let mut expected_rst_num = 0; - let mut eob_run = 0; - let mut mcu_row_coefficients = vec![vec![]; components.len()]; - - if !is_progressive { - for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) { - let coefficients_per_mcu_row = component.block_size.width as usize - * component.vertical_sampling_factor as usize - * 64; - mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row]; - } - } - - // 4.8.2 - // When reading from the stream, if the data is non-interleaved then an MCU consists of - // exactly one block (effectively a 1x1 sample). - let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved { - let horizontal = components - .iter() - .map(|component| component.horizontal_sampling_factor as u16) - .collect::<Vec<_>>(); - let vertical = components - .iter() - .map(|component| component.vertical_sampling_factor as u16) - .collect::<Vec<_>>(); - (horizontal, vertical) - } else { - (vec![1], vec![1]) - }; - - // This also affects how many MCU values we read from stream. If it's a non-interleaved stream, - // the MCUs will be exactly the block count. - let (max_mcu_x, max_mcu_y) = if is_interleaved { - (frame.mcu_size.width, frame.mcu_size.height) - } else { - ( - components[0].block_size.width, - components[0].block_size.height, - ) - }; - - for mcu_y in 0..max_mcu_y { - if mcu_y * 8 >= frame.image_size.height { - break; - } - - for mcu_x in 0..max_mcu_x { - if mcu_x * 8 >= frame.image_size.width { - break; - } - - if self.restart_interval > 0 { - if mcus_left_until_restart == 0 { - match huffman.take_marker(&mut self.reader)? { - Some(Marker::RST(n)) => { - if n != expected_rst_num { - return Err(Error::Format(format!( - "found RST{} where RST{} was expected", - n, expected_rst_num - ))); - } - - huffman.reset(); - // Section F.2.1.3.1 - dc_predictors = [0i16; MAX_COMPONENTS]; - // Section G.1.2.2 - eob_run = 0; - - expected_rst_num = (expected_rst_num + 1) % 8; - mcus_left_until_restart = self.restart_interval; - } - Some(marker) => { - return Err(Error::Format(format!( - "found marker {:?} inside scan where RST{} was expected", - marker, expected_rst_num - ))) - } - None => { - return Err(Error::Format(format!( - "no marker found where RST{} was expected", - expected_rst_num - ))) - } - } - } - - mcus_left_until_restart -= 1; - } - - for (i, component) in components.iter().enumerate() { - for v_pos in 0..mcu_vertical_samples[i] { - for h_pos in 0..mcu_horizontal_samples[i] { - let coefficients = if is_progressive { - let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize; - let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize; - let block_offset = - (block_y * component.block_size.width as usize + block_x) * 64; - &mut self.coefficients[scan.component_indices[i]] - [block_offset..block_offset + 64] - } else if finished[i] { - // Because the worker thread operates in batches as if we were always interleaved, we - // need to distinguish between a single-shot buffer and one that's currently in process - // (for a non-interleaved) stream - let mcu_batch_current_row = if is_interleaved { - 0 - } else { - mcu_y % component.vertical_sampling_factor as u16 - }; - - let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] - + v_pos) as usize; - let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize; - let block_offset = - (block_y * component.block_size.width as usize + block_x) * 64; - &mut mcu_row_coefficients[i][block_offset..block_offset + 64] - } else { - &mut dummy_block[..64] - } - .try_into() - .unwrap(); - - if scan.successive_approximation_high == 0 { - decode_block( - &mut self.reader, - coefficients, - &mut huffman, - self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(), - self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(), - scan.spectral_selection.clone(), - scan.successive_approximation_low, - &mut eob_run, - &mut dc_predictors[i], - )?; - } else { - decode_block_successive_approximation( - &mut self.reader, - coefficients, - &mut huffman, - self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(), - scan.spectral_selection.clone(), - scan.successive_approximation_low, - &mut eob_run, - )?; - } - } - } - } - } - - // Send the coefficients from this MCU row to the worker thread for dequantization and idct. - for (i, component) in components.iter().enumerate() { - if finished[i] { - // In the event of non-interleaved streams, if we're still building the buffer out, - // keep going; don't send it yet. We also need to ensure we don't skip over the last - // row(s) of the image. - if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height { - if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 { - continue; - } - } - - let coefficients_per_mcu_row = component.block_size.width as usize - * component.vertical_sampling_factor as usize - * 64; - - let row_coefficients = if is_progressive { - // Because non-interleaved streams will have multiple MCU rows concatenated together, - // the row for calculating the offset is different. - let worker_mcu_y = if is_interleaved { - mcu_y - } else { - // Explicitly doing floor-division here - mcu_y / component.vertical_sampling_factor as u16 - }; - - let offset = worker_mcu_y as usize * coefficients_per_mcu_row; - self.coefficients[scan.component_indices[i]] - [offset..offset + coefficients_per_mcu_row] - .to_vec() - } else { - mem::replace( - &mut mcu_row_coefficients[i], - vec![0i16; coefficients_per_mcu_row], - ) - }; - - // FIXME: additional potential work stealing opportunities for rayon case if we - // also internally can parallelize over components. - worker.append_row((i, row_coefficients))?; - } - } - } - - let mut marker = huffman.take_marker(&mut self.reader)?; - while let Some(Marker::RST(_)) = marker { - marker = self.read_marker().ok(); - } - - if finished.iter().any(|&c| c) { - // Retrieve all the data from the worker thread. - let mut data = vec![Vec::new(); frame.components.len()]; - - for (i, &component_index) in scan.component_indices.iter().enumerate() { - if finished[i] { - data[component_index] = worker.get_result(i)?; - } - } - - Ok((marker, Some(data))) - } else { - Ok((marker, None)) - } - } -} - -fn decode_block<R: Read>( - reader: &mut R, - coefficients: &mut [i16; 64], - huffman: &mut HuffmanDecoder, - dc_table: Option<&HuffmanTable>, - ac_table: Option<&HuffmanTable>, - spectral_selection: Range<u8>, - successive_approximation_low: u8, - eob_run: &mut u16, - dc_predictor: &mut i16, -) -> Result<()> { - debug_assert_eq!(coefficients.len(), 64); - - if spectral_selection.start == 0 { - // Section F.2.2.1 - // Figure F.12 - let value = huffman.decode(reader, dc_table.unwrap())?; - let diff = match value { - 0 => 0, - 1..=11 => huffman.receive_extend(reader, value)?, - _ => { - // Section F.1.2.1.1 - // Table F.1 - return Err(Error::Format( - "invalid DC difference magnitude category".to_owned(), - )); - } - }; - - // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add. - // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg - *dc_predictor = dc_predictor.wrapping_add(diff); - coefficients[0] = *dc_predictor << successive_approximation_low; - } - - let mut index = cmp::max(spectral_selection.start, 1); - - if index < spectral_selection.end && *eob_run > 0 { - *eob_run -= 1; - return Ok(()); - } - - // Section F.1.2.2.1 - while index < spectral_selection.end { - if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? { - index += run; - - if index >= spectral_selection.end { - break; - } - - coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low; - index += 1; - } else { - let byte = huffman.decode(reader, ac_table.unwrap())?; - let r = byte >> 4; - let s = byte & 0x0f; - - if s == 0 { - match r { - 15 => index += 16, // Run length of 16 zero coefficients. - _ => { - *eob_run = (1 << r) - 1; - - if r > 0 { - *eob_run += huffman.get_bits(reader, r)?; - } - - break; - } - } - } else { - index += r; - - if index >= spectral_selection.end { - break; - } - - coefficients[UNZIGZAG[index as usize] as usize] = - huffman.receive_extend(reader, s)? << successive_approximation_low; - index += 1; - } - } - } - - Ok(()) -} - -fn decode_block_successive_approximation<R: Read>( - reader: &mut R, - coefficients: &mut [i16; 64], - huffman: &mut HuffmanDecoder, - ac_table: Option<&HuffmanTable>, - spectral_selection: Range<u8>, - successive_approximation_low: u8, - eob_run: &mut u16, -) -> Result<()> { - debug_assert_eq!(coefficients.len(), 64); - - let bit = 1 << successive_approximation_low; - - if spectral_selection.start == 0 { - // Section G.1.2.1 - - if huffman.get_bits(reader, 1)? == 1 { - coefficients[0] |= bit; - } - } else { - // Section G.1.2.3 - - if *eob_run > 0 { - *eob_run -= 1; - refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?; - return Ok(()); - } - - let mut index = spectral_selection.start; - - while index < spectral_selection.end { - let byte = huffman.decode(reader, ac_table.unwrap())?; - let r = byte >> 4; - let s = byte & 0x0f; - - let mut zero_run_length = r; - let mut value = 0; - - match s { - 0 => { - match r { - 15 => { - // Run length of 16 zero coefficients. - // We don't need to do anything special here, zero_run_length is 15 - // and then value (which is zero) gets written, resulting in 16 - // zero coefficients. - } - _ => { - *eob_run = (1 << r) - 1; - - if r > 0 { - *eob_run += huffman.get_bits(reader, r)?; - } - - // Force end of block. - zero_run_length = 64; - } - } - } - 1 => { - if huffman.get_bits(reader, 1)? == 1 { - value = bit; - } else { - value = -bit; - } - } - _ => return Err(Error::Format("unexpected huffman code".to_owned())), - } - - let range = Range { - start: index, - end: spectral_selection.end, - }; - index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?; - - if value != 0 { - coefficients[UNZIGZAG[index as usize] as usize] = value; - } - - index += 1; - } - } - - Ok(()) -} - -fn refine_non_zeroes<R: Read>( - reader: &mut R, - coefficients: &mut [i16; 64], - huffman: &mut HuffmanDecoder, - range: Range<u8>, - zrl: u8, - bit: i16, -) -> Result<u8> { - debug_assert_eq!(coefficients.len(), 64); - - let last = range.end - 1; - let mut zero_run_length = zrl; - - for i in range { - let index = UNZIGZAG[i as usize] as usize; - - let coefficient = &mut coefficients[index]; - - if *coefficient == 0 { - if zero_run_length == 0 { - return Ok(i); - } - - zero_run_length -= 1; - } else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 { - if *coefficient > 0 { - *coefficient = coefficient - .checked_add(bit) - .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?; - } else { - *coefficient = coefficient - .checked_sub(bit) - .ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?; - } - } - } - - Ok(last) -} - -fn compute_image( - components: &[Component], - mut data: Vec<Vec<u8>>, - output_size: Dimensions, - color_transform: ColorTransform, -) -> Result<Vec<u8>> { - if data.is_empty() || data.iter().any(Vec::is_empty) { - return Err(Error::Format("not all components have data".to_owned())); - } - - if components.len() == 1 { - let component = &components[0]; - let mut decoded: Vec<u8> = data.remove(0); - - let width = component.size.width as usize; - let height = component.size.height as usize; - let size = width * height; - let line_stride = component.block_size.width as usize * component.dct_scale; - - // if the image width is a multiple of the block size, - // then we don't have to move bytes in the decoded data - if usize::from(output_size.width) != line_stride { - // The first line already starts at index 0, so we need to move only lines 1..height - // We move from the top down because all lines are being moved backwards. - for y in 1..height { - let destination_idx = y * width; - let source_idx = y * line_stride; - let end = source_idx + width; - decoded.copy_within(source_idx..end, destination_idx); - } - } - decoded.resize(size, 0); - Ok(decoded) - } else { - compute_image_parallel(components, data, output_size, color_transform) - } -} - -pub(crate) fn choose_color_convert_func( - component_count: usize, - color_transform: ColorTransform, -) -> Result<fn(&[Vec<u8>], &mut [u8])> { - match component_count { - 3 => match color_transform { - ColorTransform::None => Ok(color_no_convert), - ColorTransform::Grayscale => Err(Error::Format( - "Invalid number of channels (3) for Grayscale data".to_string(), - )), - ColorTransform::RGB => Ok(color_convert_line_rgb), - ColorTransform::YCbCr => Ok(color_convert_line_ycbcr), - ColorTransform::CMYK => Err(Error::Format( - "Invalid number of channels (3) for CMYK data".to_string(), - )), - ColorTransform::YCCK => Err(Error::Format( - "Invalid number of channels (3) for YCCK data".to_string(), - )), - ColorTransform::JcsBgYcc => Err(Error::Unsupported( - UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc), - )), - ColorTransform::JcsBgRgb => Err(Error::Unsupported( - UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb), - )), - ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())), - }, - 4 => match color_transform { - ColorTransform::None => Ok(color_no_convert), - ColorTransform::Grayscale => Err(Error::Format( - "Invalid number of channels (4) for Grayscale data".to_string(), - )), - ColorTransform::RGB => Err(Error::Format( - "Invalid number of channels (4) for RGB data".to_string(), - )), - ColorTransform::YCbCr => Err(Error::Format( - "Invalid number of channels (4) for YCbCr data".to_string(), - )), - ColorTransform::CMYK => Ok(color_convert_line_cmyk), - ColorTransform::YCCK => Ok(color_convert_line_ycck), - - ColorTransform::JcsBgYcc => Err(Error::Unsupported( - UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc), - )), - ColorTransform::JcsBgRgb => Err(Error::Unsupported( - UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb), - )), - ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())), - }, - _ => panic!(), - } -} - -fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) { - assert!(data.len() == 3, "wrong number of components for rgb"); - let [r, g, b]: &[Vec<u8>; 3] = data.try_into().unwrap(); - for (((chunk, r), g), b) in output - .chunks_exact_mut(3) - .zip(r.iter()) - .zip(g.iter()) - .zip(b.iter()) - { - chunk[0] = *r; - chunk[1] = *g; - chunk[2] = *b; - } -} - -fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) { - assert!(data.len() == 3, "wrong number of components for ycbcr"); - let [y, cb, cr]: &[_; 3] = data.try_into().unwrap(); - - #[cfg(not(feature = "platform_independent"))] - let arch_specific_pixels = { - if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() { - #[allow(unsafe_code)] - unsafe { - ycbcr(y, cb, cr, output) - } - } else { - 0 - } - }; - - #[cfg(feature = "platform_independent")] - let arch_specific_pixels = 0; - - for (((chunk, y), cb), cr) in output - .chunks_exact_mut(3) - .zip(y.iter()) - .zip(cb.iter()) - .zip(cr.iter()) - .skip(arch_specific_pixels) - { - let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr); - chunk[0] = r; - chunk[1] = g; - chunk[2] = b; - } -} - -fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) { - assert!(data.len() == 4, "wrong number of components for ycck"); - let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap(); - - for ((((chunk, c), m), y), k) in output - .chunks_exact_mut(4) - .zip(c.iter()) - .zip(m.iter()) - .zip(y.iter()) - .zip(k.iter()) - { - let (r, g, b) = ycbcr_to_rgb(*c, *m, *y); - chunk[0] = r; - chunk[1] = g; - chunk[2] = b; - chunk[3] = 255 - *k; - } -} - -fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) { - assert!(data.len() == 4, "wrong number of components for cmyk"); - let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap(); - - for ((((chunk, c), m), y), k) in output - .chunks_exact_mut(4) - .zip(c.iter()) - .zip(m.iter()) - .zip(y.iter()) - .zip(k.iter()) - { - chunk[0] = 255 - c; - chunk[1] = 255 - m; - chunk[2] = 255 - y; - chunk[3] = 255 - k; - } -} - -fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) { - let mut output_iter = output.iter_mut(); - - for pixel in data { - for d in pixel { - *(output_iter.next().unwrap()) = *d; - } - } -} - -const FIXED_POINT_OFFSET: i32 = 20; -const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2; - -// ITU-R BT.601 -// Based on libjpeg-turbo's jdcolext.c -fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) { - let y = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF; - let cb = cb as i32 - 128; - let cr = cr as i32 - 128; - - let r = clamp_fixed_point(y + stbi_f2f(1.40200) * cr); - let g = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr); - let b = clamp_fixed_point(y + stbi_f2f(1.77200) * cb); - (r, g, b) -} - -fn stbi_f2f(x: f32) -> i32 { - (x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32 -} - -fn clamp_fixed_point(value: i32) -> u8 { - (value >> FIXED_POINT_OFFSET).min(255).max(0) as u8 -} |