aboutsummaryrefslogtreecommitdiff
path: root/vendor/num-traits/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/num-traits/src/lib.rs')
-rw-r--r--vendor/num-traits/src/lib.rs635
1 files changed, 0 insertions, 635 deletions
diff --git a/vendor/num-traits/src/lib.rs b/vendor/num-traits/src/lib.rs
deleted file mode 100644
index 54dab6e..0000000
--- a/vendor/num-traits/src/lib.rs
+++ /dev/null
@@ -1,635 +0,0 @@
-// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Numeric traits for generic mathematics
-//!
-//! ## Compatibility
-//!
-//! The `num-traits` crate is tested for rustc 1.31 and greater.
-
-#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
-#![deny(unconditional_recursion)]
-#![no_std]
-
-// Need to explicitly bring the crate in for inherent float methods
-#[cfg(feature = "std")]
-extern crate std;
-
-use core::fmt;
-use core::num::Wrapping;
-use core::ops::{Add, Div, Mul, Rem, Sub};
-use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
-
-pub use crate::bounds::Bounded;
-#[cfg(any(feature = "std", feature = "libm"))]
-pub use crate::float::Float;
-pub use crate::float::FloatConst;
-// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
-pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
-pub use crate::identities::{one, zero, One, Zero};
-pub use crate::int::PrimInt;
-pub use crate::ops::bytes::{FromBytes, ToBytes};
-pub use crate::ops::checked::{
- CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
-};
-pub use crate::ops::euclid::{CheckedEuclid, Euclid};
-pub use crate::ops::inv::Inv;
-pub use crate::ops::mul_add::{MulAdd, MulAddAssign};
-pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub};
-pub use crate::ops::wrapping::{
- WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
-};
-pub use crate::pow::{checked_pow, pow, Pow};
-pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned};
-
-#[macro_use]
-mod macros;
-
-pub mod bounds;
-pub mod cast;
-pub mod float;
-pub mod identities;
-pub mod int;
-pub mod ops;
-pub mod pow;
-pub mod real;
-pub mod sign;
-
-/// The base trait for numeric types, covering `0` and `1` values,
-/// comparisons, basic numeric operations, and string conversion.
-pub trait Num: PartialEq + Zero + One + NumOps {
- type FromStrRadixErr;
-
- /// Convert from a string and radix (typically `2..=36`).
- ///
- /// # Examples
- ///
- /// ```rust
- /// use num_traits::Num;
- ///
- /// let result = <i32 as Num>::from_str_radix("27", 10);
- /// assert_eq!(result, Ok(27));
- ///
- /// let result = <i32 as Num>::from_str_radix("foo", 10);
- /// assert!(result.is_err());
- /// ```
- ///
- /// # Supported radices
- ///
- /// The exact range of supported radices is at the discretion of each type implementation. For
- /// primitive integers, this is implemented by the inherent `from_str_radix` methods in the
- /// standard library, which **panic** if the radix is not in the range from 2 to 36. The
- /// implementation in this crate for primitive floats is similar.
- ///
- /// For third-party types, it is suggested that implementations should follow suit and at least
- /// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix.
- /// It's possible that a type might not even support the common radix 10, nor any, if string
- /// parsing doesn't make sense for that type.
- fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
-}
-
-/// Generic trait for types implementing basic numeric operations
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumOps<Rhs = Self, Output = Self>:
- Add<Rhs, Output = Output>
- + Sub<Rhs, Output = Output>
- + Mul<Rhs, Output = Output>
- + Div<Rhs, Output = Output>
- + Rem<Rhs, Output = Output>
-{
-}
-
-impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
- T: Add<Rhs, Output = Output>
- + Sub<Rhs, Output = Output>
- + Mul<Rhs, Output = Output>
- + Div<Rhs, Output = Output>
- + Rem<Rhs, Output = Output>
-{
-}
-
-/// The trait for `Num` types which also implement numeric operations taking
-/// the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
-impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
-
-/// The trait for `Num` references which implement numeric operations, taking the
-/// second operand either by value or by reference.
-///
-/// This is automatically implemented for all types which implement the operators. It covers
-/// every type implementing the operations though, regardless of it being a reference or
-/// related to `Num`.
-pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-
-/// Generic trait for types implementing numeric assignment operators (like `+=`).
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignOps<Rhs = Self>:
- AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
-{
-}
-
-impl<T, Rhs> NumAssignOps<Rhs> for T where
- T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
-{
-}
-
-/// The trait for `Num` types which also implement assignment operators.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssign: Num + NumAssignOps {}
-impl<T> NumAssign for T where T: Num + NumAssignOps {}
-
-/// The trait for `NumAssign` types which also implement assignment operations
-/// taking the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
-impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
-
-macro_rules! int_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ::core::num::ParseIntError;
- #[inline]
- fn from_str_radix(s: &str, radix: u32)
- -> Result<Self, ::core::num::ParseIntError>
- {
- <$t>::from_str_radix(s, radix)
- }
- }
- )*)
-}
-int_trait_impl!(Num for usize u8 u16 u32 u64 u128);
-int_trait_impl!(Num for isize i8 i16 i32 i64 i128);
-
-impl<T: Num> Num for Wrapping<T>
-where
- Wrapping<T>: NumOps,
-{
- type FromStrRadixErr = T::FromStrRadixErr;
- fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
- T::from_str_radix(str, radix).map(Wrapping)
- }
-}
-
-#[derive(Debug)]
-pub enum FloatErrorKind {
- Empty,
- Invalid,
-}
-// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
-// so there's not really any way for us to reuse it.
-#[derive(Debug)]
-pub struct ParseFloatError {
- pub kind: FloatErrorKind,
-}
-
-impl fmt::Display for ParseFloatError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- let description = match self.kind {
- FloatErrorKind::Empty => "cannot parse float from empty string",
- FloatErrorKind::Invalid => "invalid float literal",
- };
-
- description.fmt(f)
- }
-}
-
-fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool {
- a.len() == b.len()
- && a.bytes().zip(b.bytes()).all(|(a, b)| {
- let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5);
- a_to_ascii_lower == b
- })
-}
-
-// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
-// with this implementation ourselves until we want to make a breaking change.
-// (would have to drop it from `Num` though)
-macro_rules! float_trait_impl {
- ($name:ident for $($t:ident)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ParseFloatError;
-
- fn from_str_radix(src: &str, radix: u32)
- -> Result<Self, Self::FromStrRadixErr>
- {
- use self::FloatErrorKind::*;
- use self::ParseFloatError as PFE;
-
- // Special case radix 10 to use more accurate standard library implementation
- if radix == 10 {
- return src.parse().map_err(|_| PFE {
- kind: if src.is_empty() { Empty } else { Invalid },
- });
- }
-
- // Special values
- if str_to_ascii_lower_eq_str(src, "inf")
- || str_to_ascii_lower_eq_str(src, "infinity")
- {
- return Ok(core::$t::INFINITY);
- } else if str_to_ascii_lower_eq_str(src, "-inf")
- || str_to_ascii_lower_eq_str(src, "-infinity")
- {
- return Ok(core::$t::NEG_INFINITY);
- } else if str_to_ascii_lower_eq_str(src, "nan") {
- return Ok(core::$t::NAN);
- } else if str_to_ascii_lower_eq_str(src, "-nan") {
- return Ok(-core::$t::NAN);
- }
-
- fn slice_shift_char(src: &str) -> Option<(char, &str)> {
- let mut chars = src.chars();
- Some((chars.next()?, chars.as_str()))
- }
-
- let (is_positive, src) = match slice_shift_char(src) {
- None => return Err(PFE { kind: Empty }),
- Some(('-', "")) => return Err(PFE { kind: Empty }),
- Some(('-', src)) => (false, src),
- Some((_, _)) => (true, src),
- };
-
- // The significand to accumulate
- let mut sig = if is_positive { 0.0 } else { -0.0 };
- // Necessary to detect overflow
- let mut prev_sig = sig;
- let mut cs = src.chars().enumerate();
- // Exponent prefix and exponent index offset
- let mut exp_info = None::<(char, usize)>;
-
- // Parse the integer part of the significand
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // shift significand one digit left
- sig *= radix as $t;
-
- // add/subtract current digit depending on sign
- if is_positive {
- sig += (digit as isize) as $t;
- } else {
- sig -= (digit as isize) as $t;
- }
-
- // Detect overflow by comparing to last value, except
- // if we've not seen any non-zero digits.
- if prev_sig != 0.0 {
- if is_positive && sig <= prev_sig
- { return Ok(core::$t::INFINITY); }
- if !is_positive && sig >= prev_sig
- { return Ok(core::$t::NEG_INFINITY); }
-
- // Detect overflow by reversing the shift-and-add process
- if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
- { return Ok(core::$t::INFINITY); }
- if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
- { return Ok(core::$t::NEG_INFINITY); }
- }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- '.' => {
- break; // start of fractional part
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
-
- // If we are not yet at the exponent parse the fractional
- // part of the significand
- if exp_info.is_none() {
- let mut power = 1.0;
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // Decrease power one order of magnitude
- power /= radix as $t;
- // add/subtract current digit depending on sign
- sig = if is_positive {
- sig + (digit as $t) * power
- } else {
- sig - (digit as $t) * power
- };
- // Detect overflow by comparing to last value
- if is_positive && sig < prev_sig
- { return Ok(core::$t::INFINITY); }
- if !is_positive && sig > prev_sig
- { return Ok(core::$t::NEG_INFINITY); }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
- }
-
- // Parse and calculate the exponent
- let exp = match exp_info {
- Some((c, offset)) => {
- let base = match c {
- 'E' | 'e' if radix == 10 => 10.0,
- 'P' | 'p' if radix == 16 => 2.0,
- _ => return Err(PFE { kind: Invalid }),
- };
-
- // Parse the exponent as decimal integer
- let src = &src[offset..];
- let (is_positive, exp) = match slice_shift_char(src) {
- Some(('-', src)) => (false, src.parse::<usize>()),
- Some(('+', src)) => (true, src.parse::<usize>()),
- Some((_, _)) => (true, src.parse::<usize>()),
- None => return Err(PFE { kind: Invalid }),
- };
-
- #[cfg(feature = "std")]
- fn pow(base: $t, exp: usize) -> $t {
- Float::powi(base, exp as i32)
- }
- // otherwise uses the generic `pow` from the root
-
- match (is_positive, exp) {
- (true, Ok(exp)) => pow(base, exp),
- (false, Ok(exp)) => 1.0 / pow(base, exp),
- (_, Err(_)) => return Err(PFE { kind: Invalid }),
- }
- },
- None => 1.0, // no exponent
- };
-
- Ok(sig * exp)
- }
- }
- )*)
-}
-float_trait_impl!(Num for f32 f64);
-
-/// A value bounded by a minimum and a maximum
-///
-/// If input is less than min then this returns min.
-/// If input is greater than max then this returns max.
-/// Otherwise this returns input.
-///
-/// **Panics** in debug mode if `!(min <= max)`.
-#[inline]
-pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
- debug_assert!(min <= max, "min must be less than or equal to max");
- if input < min {
- min
- } else if input > max {
- max
- } else {
- input
- }
-}
-
-/// A value bounded by a minimum value
-///
-/// If input is less than min then this returns min.
-/// Otherwise this returns input.
-/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
-///
-/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
-#[inline]
-#[allow(clippy::eq_op)]
-pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
- debug_assert!(min == min, "min must not be NAN");
- if input < min {
- min
- } else {
- input
- }
-}
-
-/// A value bounded by a maximum value
-///
-/// If input is greater than max then this returns max.
-/// Otherwise this returns input.
-/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
-///
-/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
-#[inline]
-#[allow(clippy::eq_op)]
-pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
- debug_assert!(max == max, "max must not be NAN");
- if input > max {
- max
- } else {
- input
- }
-}
-
-#[test]
-fn clamp_test() {
- // Int test
- assert_eq!(1, clamp(1, -1, 2));
- assert_eq!(-1, clamp(-2, -1, 2));
- assert_eq!(2, clamp(3, -1, 2));
- assert_eq!(1, clamp_min(1, -1));
- assert_eq!(-1, clamp_min(-2, -1));
- assert_eq!(-1, clamp_max(1, -1));
- assert_eq!(-2, clamp_max(-2, -1));
-
- // Float test
- assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
- assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
- assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
- assert_eq!(1.0, clamp_min(1.0, -1.0));
- assert_eq!(-1.0, clamp_min(-2.0, -1.0));
- assert_eq!(-1.0, clamp_max(1.0, -1.0));
- assert_eq!(-2.0, clamp_max(-2.0, -1.0));
- assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
- assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
- assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_min() {
- clamp(0., ::core::f32::NAN, 1.);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_max() {
- clamp(0., -1., ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_min_max() {
- clamp(0., ::core::f32::NAN, ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_min_nan_min() {
- clamp_min(0., ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_max_nan_max() {
- clamp_max(0., ::core::f32::NAN);
-}
-
-#[test]
-fn from_str_radix_unwrap() {
- // The Result error must impl Debug to allow unwrap()
-
- let i: i32 = Num::from_str_radix("0", 10).unwrap();
- assert_eq!(i, 0);
-
- let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
- assert_eq!(f, 0.0);
-}
-
-#[test]
-fn from_str_radix_multi_byte_fail() {
- // Ensure parsing doesn't panic, even on invalid sign characters
- assert!(f32::from_str_radix("™0.2", 10).is_err());
-
- // Even when parsing the exponent sign
- assert!(f32::from_str_radix("0.2E™1", 10).is_err());
-}
-
-#[test]
-fn from_str_radix_ignore_case() {
- assert_eq!(
- f32::from_str_radix("InF", 16).unwrap(),
- ::core::f32::INFINITY
- );
- assert_eq!(
- f32::from_str_radix("InfinitY", 16).unwrap(),
- ::core::f32::INFINITY
- );
- assert_eq!(
- f32::from_str_radix("-InF", 8).unwrap(),
- ::core::f32::NEG_INFINITY
- );
- assert_eq!(
- f32::from_str_radix("-InfinitY", 8).unwrap(),
- ::core::f32::NEG_INFINITY
- );
- assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan());
- assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan());
-}
-
-#[test]
-fn wrapping_is_num() {
- fn require_num<T: Num>(_: &T) {}
- require_num(&Wrapping(42_u32));
- require_num(&Wrapping(-42));
-}
-
-#[test]
-fn wrapping_from_str_radix() {
- macro_rules! test_wrapping_from_str_radix {
- ($($t:ty)+) => {
- $(
- for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
- let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
- assert_eq!(w, <$t as Num>::from_str_radix(s, r));
- }
- )+
- };
- }
-
- test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
-}
-
-#[test]
-fn check_num_ops() {
- fn compute<T: Num + Copy>(x: T, y: T) -> T {
- x * y / y % y + y - y
- }
- assert_eq!(compute(1, 2), 1)
-}
-
-#[test]
-fn check_numref_ops() {
- fn compute<T: NumRef>(x: T, y: &T) -> T {
- x * y / y % y + y - y
- }
- assert_eq!(compute(1, &2), 1)
-}
-
-#[test]
-fn check_refnum_ops() {
- fn compute<T: Copy>(x: &T, y: T) -> T
- where
- for<'a> &'a T: RefNum<T>,
- {
- &(&(&(&(x * y) / y) % y) + y) - y
- }
- assert_eq!(compute(&1, 2), 1)
-}
-
-#[test]
-fn check_refref_ops() {
- fn compute<T>(x: &T, y: &T) -> T
- where
- for<'a> &'a T: RefNum<T>,
- {
- &(&(&(&(x * y) / y) % y) + y) - y
- }
- assert_eq!(compute(&1, &2), 1)
-}
-
-#[test]
-fn check_numassign_ops() {
- fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
- x *= y;
- x /= y;
- x %= y;
- x += y;
- x -= y;
- x
- }
- assert_eq!(compute(1, 2), 1)
-}
-
-#[test]
-fn check_numassignref_ops() {
- fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T {
- x *= y;
- x /= y;
- x %= y;
- x += y;
- x -= y;
- x
- }
- assert_eq!(compute(1, &2), 1)
-}