aboutsummaryrefslogtreecommitdiff
path: root/vendor/num-traits/src
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/num-traits/src')
-rw-r--r--vendor/num-traits/src/bounds.rs148
-rw-r--r--vendor/num-traits/src/cast.rs778
-rw-r--r--vendor/num-traits/src/float.rs2344
-rw-r--r--vendor/num-traits/src/identities.rs202
-rw-r--r--vendor/num-traits/src/int.rs565
-rw-r--r--vendor/num-traits/src/lib.rs635
-rw-r--r--vendor/num-traits/src/macros.rs44
-rw-r--r--vendor/num-traits/src/ops/bytes.rs403
-rw-r--r--vendor/num-traits/src/ops/checked.rs261
-rw-r--r--vendor/num-traits/src/ops/euclid.rs339
-rw-r--r--vendor/num-traits/src/ops/inv.rs47
-rw-r--r--vendor/num-traits/src/ops/mod.rs8
-rw-r--r--vendor/num-traits/src/ops/mul_add.rs149
-rw-r--r--vendor/num-traits/src/ops/overflowing.rs96
-rw-r--r--vendor/num-traits/src/ops/saturating.rs130
-rw-r--r--vendor/num-traits/src/ops/wrapping.rs327
-rw-r--r--vendor/num-traits/src/pow.rs242
-rw-r--r--vendor/num-traits/src/real.rs834
-rw-r--r--vendor/num-traits/src/sign.rs216
19 files changed, 0 insertions, 7768 deletions
diff --git a/vendor/num-traits/src/bounds.rs b/vendor/num-traits/src/bounds.rs
deleted file mode 100644
index acc990e..0000000
--- a/vendor/num-traits/src/bounds.rs
+++ /dev/null
@@ -1,148 +0,0 @@
-use core::num::Wrapping;
-use core::{f32, f64};
-use core::{i128, i16, i32, i64, i8, isize};
-use core::{u128, u16, u32, u64, u8, usize};
-
-/// Numbers which have upper and lower bounds
-pub trait Bounded {
- // FIXME (#5527): These should be associated constants
- /// Returns the smallest finite number this type can represent
- fn min_value() -> Self;
- /// Returns the largest finite number this type can represent
- fn max_value() -> Self;
-}
-
-/// Numbers which have lower bounds
-pub trait LowerBounded {
- /// Returns the smallest finite number this type can represent
- fn min_value() -> Self;
-}
-
-// FIXME: With a major version bump, this should be a supertrait instead
-impl<T: Bounded> LowerBounded for T {
- fn min_value() -> T {
- Bounded::min_value()
- }
-}
-
-/// Numbers which have upper bounds
-pub trait UpperBounded {
- /// Returns the largest finite number this type can represent
- fn max_value() -> Self;
-}
-
-// FIXME: With a major version bump, this should be a supertrait instead
-impl<T: Bounded> UpperBounded for T {
- fn max_value() -> T {
- Bounded::max_value()
- }
-}
-
-macro_rules! bounded_impl {
- ($t:ty, $min:expr, $max:expr) => {
- impl Bounded for $t {
- #[inline]
- fn min_value() -> $t {
- $min
- }
-
- #[inline]
- fn max_value() -> $t {
- $max
- }
- }
- };
-}
-
-bounded_impl!(usize, usize::MIN, usize::MAX);
-bounded_impl!(u8, u8::MIN, u8::MAX);
-bounded_impl!(u16, u16::MIN, u16::MAX);
-bounded_impl!(u32, u32::MIN, u32::MAX);
-bounded_impl!(u64, u64::MIN, u64::MAX);
-bounded_impl!(u128, u128::MIN, u128::MAX);
-
-bounded_impl!(isize, isize::MIN, isize::MAX);
-bounded_impl!(i8, i8::MIN, i8::MAX);
-bounded_impl!(i16, i16::MIN, i16::MAX);
-bounded_impl!(i32, i32::MIN, i32::MAX);
-bounded_impl!(i64, i64::MIN, i64::MAX);
-bounded_impl!(i128, i128::MIN, i128::MAX);
-
-impl<T: Bounded> Bounded for Wrapping<T> {
- fn min_value() -> Self {
- Wrapping(T::min_value())
- }
- fn max_value() -> Self {
- Wrapping(T::max_value())
- }
-}
-
-bounded_impl!(f32, f32::MIN, f32::MAX);
-
-macro_rules! for_each_tuple_ {
- ( $m:ident !! ) => (
- $m! { }
- );
- ( $m:ident !! $h:ident, $($t:ident,)* ) => (
- $m! { $h $($t)* }
- for_each_tuple_! { $m !! $($t,)* }
- );
-}
-macro_rules! for_each_tuple {
- ($m:ident) => {
- for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
- };
-}
-
-macro_rules! bounded_tuple {
- ( $($name:ident)* ) => (
- impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
- #[inline]
- fn min_value() -> Self {
- ($($name::min_value(),)*)
- }
- #[inline]
- fn max_value() -> Self {
- ($($name::max_value(),)*)
- }
- }
- );
-}
-
-for_each_tuple!(bounded_tuple);
-bounded_impl!(f64, f64::MIN, f64::MAX);
-
-#[test]
-fn wrapping_bounded() {
- macro_rules! test_wrapping_bounded {
- ($($t:ty)+) => {
- $(
- assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
- assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
- )+
- };
- }
-
- test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
-}
-
-#[test]
-fn wrapping_bounded_i128() {
- macro_rules! test_wrapping_bounded {
- ($($t:ty)+) => {
- $(
- assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
- assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
- )+
- };
- }
-
- test_wrapping_bounded!(u128 i128);
-}
-
-#[test]
-fn wrapping_is_bounded() {
- fn require_bounded<T: Bounded>(_: &T) {}
- require_bounded(&Wrapping(42_u32));
- require_bounded(&Wrapping(-42));
-}
diff --git a/vendor/num-traits/src/cast.rs b/vendor/num-traits/src/cast.rs
deleted file mode 100644
index 125e2e3..0000000
--- a/vendor/num-traits/src/cast.rs
+++ /dev/null
@@ -1,778 +0,0 @@
-use core::mem::size_of;
-use core::num::Wrapping;
-use core::{f32, f64};
-use core::{i128, i16, i32, i64, i8, isize};
-use core::{u128, u16, u32, u64, u8, usize};
-
-/// A generic trait for converting a value to a number.
-///
-/// A value can be represented by the target type when it lies within
-/// the range of scalars supported by the target type.
-/// For example, a negative integer cannot be represented by an unsigned
-/// integer type, and an `i64` with a very high magnitude might not be
-/// convertible to an `i32`.
-/// On the other hand, conversions with possible precision loss or truncation
-/// are admitted, like an `f32` with a decimal part to an integer type, or
-/// even a large `f64` saturating to `f32` infinity.
-pub trait ToPrimitive {
- /// Converts the value of `self` to an `isize`. If the value cannot be
- /// represented by an `isize`, then `None` is returned.
- #[inline]
- fn to_isize(&self) -> Option<isize> {
- self.to_i64().as_ref().and_then(ToPrimitive::to_isize)
- }
-
- /// Converts the value of `self` to an `i8`. If the value cannot be
- /// represented by an `i8`, then `None` is returned.
- #[inline]
- fn to_i8(&self) -> Option<i8> {
- self.to_i64().as_ref().and_then(ToPrimitive::to_i8)
- }
-
- /// Converts the value of `self` to an `i16`. If the value cannot be
- /// represented by an `i16`, then `None` is returned.
- #[inline]
- fn to_i16(&self) -> Option<i16> {
- self.to_i64().as_ref().and_then(ToPrimitive::to_i16)
- }
-
- /// Converts the value of `self` to an `i32`. If the value cannot be
- /// represented by an `i32`, then `None` is returned.
- #[inline]
- fn to_i32(&self) -> Option<i32> {
- self.to_i64().as_ref().and_then(ToPrimitive::to_i32)
- }
-
- /// Converts the value of `self` to an `i64`. If the value cannot be
- /// represented by an `i64`, then `None` is returned.
- fn to_i64(&self) -> Option<i64>;
-
- /// Converts the value of `self` to an `i128`. If the value cannot be
- /// represented by an `i128` (`i64` under the default implementation), then
- /// `None` is returned.
- ///
- /// The default implementation converts through `to_i64()`. Types implementing
- /// this trait should override this method if they can represent a greater range.
- #[inline]
- fn to_i128(&self) -> Option<i128> {
- self.to_i64().map(From::from)
- }
-
- /// Converts the value of `self` to a `usize`. If the value cannot be
- /// represented by a `usize`, then `None` is returned.
- #[inline]
- fn to_usize(&self) -> Option<usize> {
- self.to_u64().as_ref().and_then(ToPrimitive::to_usize)
- }
-
- /// Converts the value of `self` to a `u8`. If the value cannot be
- /// represented by a `u8`, then `None` is returned.
- #[inline]
- fn to_u8(&self) -> Option<u8> {
- self.to_u64().as_ref().and_then(ToPrimitive::to_u8)
- }
-
- /// Converts the value of `self` to a `u16`. If the value cannot be
- /// represented by a `u16`, then `None` is returned.
- #[inline]
- fn to_u16(&self) -> Option<u16> {
- self.to_u64().as_ref().and_then(ToPrimitive::to_u16)
- }
-
- /// Converts the value of `self` to a `u32`. If the value cannot be
- /// represented by a `u32`, then `None` is returned.
- #[inline]
- fn to_u32(&self) -> Option<u32> {
- self.to_u64().as_ref().and_then(ToPrimitive::to_u32)
- }
-
- /// Converts the value of `self` to a `u64`. If the value cannot be
- /// represented by a `u64`, then `None` is returned.
- fn to_u64(&self) -> Option<u64>;
-
- /// Converts the value of `self` to a `u128`. If the value cannot be
- /// represented by a `u128` (`u64` under the default implementation), then
- /// `None` is returned.
- ///
- /// The default implementation converts through `to_u64()`. Types implementing
- /// this trait should override this method if they can represent a greater range.
- #[inline]
- fn to_u128(&self) -> Option<u128> {
- self.to_u64().map(From::from)
- }
-
- /// Converts the value of `self` to an `f32`. Overflows may map to positive
- /// or negative inifinity, otherwise `None` is returned if the value cannot
- /// be represented by an `f32`.
- #[inline]
- fn to_f32(&self) -> Option<f32> {
- self.to_f64().as_ref().and_then(ToPrimitive::to_f32)
- }
-
- /// Converts the value of `self` to an `f64`. Overflows may map to positive
- /// or negative inifinity, otherwise `None` is returned if the value cannot
- /// be represented by an `f64`.
- ///
- /// The default implementation tries to convert through `to_i64()`, and
- /// failing that through `to_u64()`. Types implementing this trait should
- /// override this method if they can represent a greater range.
- #[inline]
- fn to_f64(&self) -> Option<f64> {
- match self.to_i64() {
- Some(i) => i.to_f64(),
- None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64),
- }
- }
-}
-
-macro_rules! impl_to_primitive_int_to_int {
- ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$DstT> {
- let min = $DstT::MIN as $SrcT;
- let max = $DstT::MAX as $SrcT;
- if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) {
- Some(*self as $DstT)
- } else {
- None
- }
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_int_to_uint {
- ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$DstT> {
- let max = $DstT::MAX as $SrcT;
- if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) {
- Some(*self as $DstT)
- } else {
- None
- }
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_int {
- ($T:ident) => {
- impl ToPrimitive for $T {
- impl_to_primitive_int_to_int! { $T:
- fn to_isize -> isize;
- fn to_i8 -> i8;
- fn to_i16 -> i16;
- fn to_i32 -> i32;
- fn to_i64 -> i64;
- fn to_i128 -> i128;
- }
-
- impl_to_primitive_int_to_uint! { $T:
- fn to_usize -> usize;
- fn to_u8 -> u8;
- fn to_u16 -> u16;
- fn to_u32 -> u32;
- fn to_u64 -> u64;
- fn to_u128 -> u128;
- }
-
- #[inline]
- fn to_f32(&self) -> Option<f32> {
- Some(*self as f32)
- }
- #[inline]
- fn to_f64(&self) -> Option<f64> {
- Some(*self as f64)
- }
- }
- };
-}
-
-impl_to_primitive_int!(isize);
-impl_to_primitive_int!(i8);
-impl_to_primitive_int!(i16);
-impl_to_primitive_int!(i32);
-impl_to_primitive_int!(i64);
-impl_to_primitive_int!(i128);
-
-macro_rules! impl_to_primitive_uint_to_int {
- ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$DstT> {
- let max = $DstT::MAX as $SrcT;
- if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max {
- Some(*self as $DstT)
- } else {
- None
- }
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_uint_to_uint {
- ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$DstT> {
- let max = $DstT::MAX as $SrcT;
- if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max {
- Some(*self as $DstT)
- } else {
- None
- }
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_uint {
- ($T:ident) => {
- impl ToPrimitive for $T {
- impl_to_primitive_uint_to_int! { $T:
- fn to_isize -> isize;
- fn to_i8 -> i8;
- fn to_i16 -> i16;
- fn to_i32 -> i32;
- fn to_i64 -> i64;
- fn to_i128 -> i128;
- }
-
- impl_to_primitive_uint_to_uint! { $T:
- fn to_usize -> usize;
- fn to_u8 -> u8;
- fn to_u16 -> u16;
- fn to_u32 -> u32;
- fn to_u64 -> u64;
- fn to_u128 -> u128;
- }
-
- #[inline]
- fn to_f32(&self) -> Option<f32> {
- Some(*self as f32)
- }
- #[inline]
- fn to_f64(&self) -> Option<f64> {
- Some(*self as f64)
- }
- }
- };
-}
-
-impl_to_primitive_uint!(usize);
-impl_to_primitive_uint!(u8);
-impl_to_primitive_uint!(u16);
-impl_to_primitive_uint!(u32);
-impl_to_primitive_uint!(u64);
-impl_to_primitive_uint!(u128);
-
-macro_rules! impl_to_primitive_float_to_float {
- ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
- #[inline]
- fn $method(&self) -> Option<$DstT> {
- // We can safely cast all values, whether NaN, +-inf, or finite.
- // Finite values that are reducing size may saturate to +-inf.
- Some(*self as $DstT)
- }
- )*}
-}
-
-#[cfg(has_to_int_unchecked)]
-macro_rules! float_to_int_unchecked {
- // SAFETY: Must not be NaN or infinite; must be representable as the integer after truncating.
- // We already checked that the float is in the exclusive range `(MIN-1, MAX+1)`.
- ($float:expr => $int:ty) => {
- unsafe { $float.to_int_unchecked::<$int>() }
- };
-}
-
-#[cfg(not(has_to_int_unchecked))]
-macro_rules! float_to_int_unchecked {
- ($float:expr => $int:ty) => {
- $float as $int
- };
-}
-
-macro_rules! impl_to_primitive_float_to_signed_int {
- ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$i> {
- // Float as int truncates toward zero, so we want to allow values
- // in the exclusive range `(MIN-1, MAX+1)`.
- if size_of::<$f>() > size_of::<$i>() {
- // With a larger size, we can represent the range exactly.
- const MIN_M1: $f = $i::MIN as $f - 1.0;
- const MAX_P1: $f = $i::MAX as $f + 1.0;
- if *self > MIN_M1 && *self < MAX_P1 {
- return Some(float_to_int_unchecked!(*self => $i));
- }
- } else {
- // We can't represent `MIN-1` exactly, but there's no fractional part
- // at this magnitude, so we can just use a `MIN` inclusive boundary.
- const MIN: $f = $i::MIN as $f;
- // We can't represent `MAX` exactly, but it will round up to exactly
- // `MAX+1` (a power of two) when we cast it.
- const MAX_P1: $f = $i::MAX as $f;
- if *self >= MIN && *self < MAX_P1 {
- return Some(float_to_int_unchecked!(*self => $i));
- }
- }
- None
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_float_to_unsigned_int {
- ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$u> {
- // Float as int truncates toward zero, so we want to allow values
- // in the exclusive range `(-1, MAX+1)`.
- if size_of::<$f>() > size_of::<$u>() {
- // With a larger size, we can represent the range exactly.
- const MAX_P1: $f = $u::MAX as $f + 1.0;
- if *self > -1.0 && *self < MAX_P1 {
- return Some(float_to_int_unchecked!(*self => $u));
- }
- } else {
- // We can't represent `MAX` exactly, but it will round up to exactly
- // `MAX+1` (a power of two) when we cast it.
- // (`u128::MAX as f32` is infinity, but this is still ok.)
- const MAX_P1: $f = $u::MAX as $f;
- if *self > -1.0 && *self < MAX_P1 {
- return Some(float_to_int_unchecked!(*self => $u));
- }
- }
- None
- }
- )*}
-}
-
-macro_rules! impl_to_primitive_float {
- ($T:ident) => {
- impl ToPrimitive for $T {
- impl_to_primitive_float_to_signed_int! { $T:
- fn to_isize -> isize;
- fn to_i8 -> i8;
- fn to_i16 -> i16;
- fn to_i32 -> i32;
- fn to_i64 -> i64;
- fn to_i128 -> i128;
- }
-
- impl_to_primitive_float_to_unsigned_int! { $T:
- fn to_usize -> usize;
- fn to_u8 -> u8;
- fn to_u16 -> u16;
- fn to_u32 -> u32;
- fn to_u64 -> u64;
- fn to_u128 -> u128;
- }
-
- impl_to_primitive_float_to_float! { $T:
- fn to_f32 -> f32;
- fn to_f64 -> f64;
- }
- }
- };
-}
-
-impl_to_primitive_float!(f32);
-impl_to_primitive_float!(f64);
-
-/// A generic trait for converting a number to a value.
-///
-/// A value can be represented by the target type when it lies within
-/// the range of scalars supported by the target type.
-/// For example, a negative integer cannot be represented by an unsigned
-/// integer type, and an `i64` with a very high magnitude might not be
-/// convertible to an `i32`.
-/// On the other hand, conversions with possible precision loss or truncation
-/// are admitted, like an `f32` with a decimal part to an integer type, or
-/// even a large `f64` saturating to `f32` infinity.
-pub trait FromPrimitive: Sized {
- /// Converts an `isize` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_isize(n: isize) -> Option<Self> {
- n.to_i64().and_then(FromPrimitive::from_i64)
- }
-
- /// Converts an `i8` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_i8(n: i8) -> Option<Self> {
- FromPrimitive::from_i64(From::from(n))
- }
-
- /// Converts an `i16` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_i16(n: i16) -> Option<Self> {
- FromPrimitive::from_i64(From::from(n))
- }
-
- /// Converts an `i32` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_i32(n: i32) -> Option<Self> {
- FromPrimitive::from_i64(From::from(n))
- }
-
- /// Converts an `i64` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- fn from_i64(n: i64) -> Option<Self>;
-
- /// Converts an `i128` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- ///
- /// The default implementation converts through `from_i64()`. Types implementing
- /// this trait should override this method if they can represent a greater range.
- #[inline]
- fn from_i128(n: i128) -> Option<Self> {
- n.to_i64().and_then(FromPrimitive::from_i64)
- }
-
- /// Converts a `usize` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_usize(n: usize) -> Option<Self> {
- n.to_u64().and_then(FromPrimitive::from_u64)
- }
-
- /// Converts an `u8` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_u8(n: u8) -> Option<Self> {
- FromPrimitive::from_u64(From::from(n))
- }
-
- /// Converts an `u16` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_u16(n: u16) -> Option<Self> {
- FromPrimitive::from_u64(From::from(n))
- }
-
- /// Converts an `u32` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_u32(n: u32) -> Option<Self> {
- FromPrimitive::from_u64(From::from(n))
- }
-
- /// Converts an `u64` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- fn from_u64(n: u64) -> Option<Self>;
-
- /// Converts an `u128` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- ///
- /// The default implementation converts through `from_u64()`. Types implementing
- /// this trait should override this method if they can represent a greater range.
- #[inline]
- fn from_u128(n: u128) -> Option<Self> {
- n.to_u64().and_then(FromPrimitive::from_u64)
- }
-
- /// Converts a `f32` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- #[inline]
- fn from_f32(n: f32) -> Option<Self> {
- FromPrimitive::from_f64(From::from(n))
- }
-
- /// Converts a `f64` to return an optional value of this type. If the
- /// value cannot be represented by this type, then `None` is returned.
- ///
- /// The default implementation tries to convert through `from_i64()`, and
- /// failing that through `from_u64()`. Types implementing this trait should
- /// override this method if they can represent a greater range.
- #[inline]
- fn from_f64(n: f64) -> Option<Self> {
- match n.to_i64() {
- Some(i) => FromPrimitive::from_i64(i),
- None => n.to_u64().and_then(FromPrimitive::from_u64),
- }
- }
-}
-
-macro_rules! impl_from_primitive {
- ($T:ty, $to_ty:ident) => {
- #[allow(deprecated)]
- impl FromPrimitive for $T {
- #[inline]
- fn from_isize(n: isize) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_i8(n: i8) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_i16(n: i16) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_i32(n: i32) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_i64(n: i64) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_i128(n: i128) -> Option<$T> {
- n.$to_ty()
- }
-
- #[inline]
- fn from_usize(n: usize) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_u8(n: u8) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_u16(n: u16) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_u32(n: u32) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_u64(n: u64) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_u128(n: u128) -> Option<$T> {
- n.$to_ty()
- }
-
- #[inline]
- fn from_f32(n: f32) -> Option<$T> {
- n.$to_ty()
- }
- #[inline]
- fn from_f64(n: f64) -> Option<$T> {
- n.$to_ty()
- }
- }
- };
-}
-
-impl_from_primitive!(isize, to_isize);
-impl_from_primitive!(i8, to_i8);
-impl_from_primitive!(i16, to_i16);
-impl_from_primitive!(i32, to_i32);
-impl_from_primitive!(i64, to_i64);
-impl_from_primitive!(i128, to_i128);
-impl_from_primitive!(usize, to_usize);
-impl_from_primitive!(u8, to_u8);
-impl_from_primitive!(u16, to_u16);
-impl_from_primitive!(u32, to_u32);
-impl_from_primitive!(u64, to_u64);
-impl_from_primitive!(u128, to_u128);
-impl_from_primitive!(f32, to_f32);
-impl_from_primitive!(f64, to_f64);
-
-macro_rules! impl_to_primitive_wrapping {
- ($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(&self) -> Option<$i> {
- (self.0).$method()
- }
- )*}
-}
-
-impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
- impl_to_primitive_wrapping! {
- fn to_isize -> isize;
- fn to_i8 -> i8;
- fn to_i16 -> i16;
- fn to_i32 -> i32;
- fn to_i64 -> i64;
- fn to_i128 -> i128;
-
- fn to_usize -> usize;
- fn to_u8 -> u8;
- fn to_u16 -> u16;
- fn to_u32 -> u32;
- fn to_u64 -> u64;
- fn to_u128 -> u128;
-
- fn to_f32 -> f32;
- fn to_f64 -> f64;
- }
-}
-
-macro_rules! impl_from_primitive_wrapping {
- ($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$(
- #[inline]
- $(#[$cfg])*
- fn $method(n: $i) -> Option<Self> {
- T::$method(n).map(Wrapping)
- }
- )*}
-}
-
-impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
- impl_from_primitive_wrapping! {
- fn from_isize(isize);
- fn from_i8(i8);
- fn from_i16(i16);
- fn from_i32(i32);
- fn from_i64(i64);
- fn from_i128(i128);
-
- fn from_usize(usize);
- fn from_u8(u8);
- fn from_u16(u16);
- fn from_u32(u32);
- fn from_u64(u64);
- fn from_u128(u128);
-
- fn from_f32(f32);
- fn from_f64(f64);
- }
-}
-
-/// Cast from one machine scalar to another.
-///
-/// # Examples
-///
-/// ```
-/// # use num_traits as num;
-/// let twenty: f32 = num::cast(0x14).unwrap();
-/// assert_eq!(twenty, 20f32);
-/// ```
-///
-#[inline]
-pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
- NumCast::from(n)
-}
-
-/// An interface for casting between machine scalars.
-pub trait NumCast: Sized + ToPrimitive {
- /// Creates a number from another value that can be converted into
- /// a primitive via the `ToPrimitive` trait. If the source value cannot be
- /// represented by the target type, then `None` is returned.
- ///
- /// A value can be represented by the target type when it lies within
- /// the range of scalars supported by the target type.
- /// For example, a negative integer cannot be represented by an unsigned
- /// integer type, and an `i64` with a very high magnitude might not be
- /// convertible to an `i32`.
- /// On the other hand, conversions with possible precision loss or truncation
- /// are admitted, like an `f32` with a decimal part to an integer type, or
- /// even a large `f64` saturating to `f32` infinity.
- fn from<T: ToPrimitive>(n: T) -> Option<Self>;
-}
-
-macro_rules! impl_num_cast {
- ($T:ty, $conv:ident) => {
- impl NumCast for $T {
- #[inline]
- #[allow(deprecated)]
- fn from<N: ToPrimitive>(n: N) -> Option<$T> {
- // `$conv` could be generated using `concat_idents!`, but that
- // macro seems to be broken at the moment
- n.$conv()
- }
- }
- };
-}
-
-impl_num_cast!(u8, to_u8);
-impl_num_cast!(u16, to_u16);
-impl_num_cast!(u32, to_u32);
-impl_num_cast!(u64, to_u64);
-impl_num_cast!(u128, to_u128);
-impl_num_cast!(usize, to_usize);
-impl_num_cast!(i8, to_i8);
-impl_num_cast!(i16, to_i16);
-impl_num_cast!(i32, to_i32);
-impl_num_cast!(i64, to_i64);
-impl_num_cast!(i128, to_i128);
-impl_num_cast!(isize, to_isize);
-impl_num_cast!(f32, to_f32);
-impl_num_cast!(f64, to_f64);
-
-impl<T: NumCast> NumCast for Wrapping<T> {
- fn from<U: ToPrimitive>(n: U) -> Option<Self> {
- T::from(n).map(Wrapping)
- }
-}
-
-/// A generic interface for casting between machine scalars with the
-/// `as` operator, which admits narrowing and precision loss.
-/// Implementers of this trait `AsPrimitive` should behave like a primitive
-/// numeric type (e.g. a newtype around another primitive), and the
-/// intended conversion must never fail.
-///
-/// # Examples
-///
-/// ```
-/// # use num_traits::AsPrimitive;
-/// let three: i32 = (3.14159265f32).as_();
-/// assert_eq!(three, 3);
-/// ```
-///
-/// # Safety
-///
-/// **In Rust versions before 1.45.0**, some uses of the `as` operator were not entirely safe.
-/// In particular, it was undefined behavior if
-/// a truncated floating point value could not fit in the target integer
-/// type ([#10184](https://github.com/rust-lang/rust/issues/10184)).
-///
-/// ```ignore
-/// # use num_traits::AsPrimitive;
-/// let x: u8 = (1.04E+17).as_(); // UB
-/// ```
-///
-pub trait AsPrimitive<T>: 'static + Copy
-where
- T: 'static + Copy,
-{
- /// Convert a value to another, using the `as` operator.
- fn as_(self) -> T;
-}
-
-macro_rules! impl_as_primitive {
- (@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => {
- $(#[$cfg])*
- impl AsPrimitive<$U> for $T {
- #[inline] fn as_(self) -> $U { self as $U }
- }
- };
- (@ $T: ty => { $( $U: ty ),* } ) => {$(
- impl_as_primitive!(@ $T => impl $U);
- )*};
- ($T: ty => { $( $U: ty ),* } ) => {
- impl_as_primitive!(@ $T => { $( $U ),* });
- impl_as_primitive!(@ $T => { u8, u16, u32, u64, u128, usize });
- impl_as_primitive!(@ $T => { i8, i16, i32, i64, i128, isize });
- };
-}
-
-impl_as_primitive!(u8 => { char, f32, f64 });
-impl_as_primitive!(i8 => { f32, f64 });
-impl_as_primitive!(u16 => { f32, f64 });
-impl_as_primitive!(i16 => { f32, f64 });
-impl_as_primitive!(u32 => { f32, f64 });
-impl_as_primitive!(i32 => { f32, f64 });
-impl_as_primitive!(u64 => { f32, f64 });
-impl_as_primitive!(i64 => { f32, f64 });
-impl_as_primitive!(u128 => { f32, f64 });
-impl_as_primitive!(i128 => { f32, f64 });
-impl_as_primitive!(usize => { f32, f64 });
-impl_as_primitive!(isize => { f32, f64 });
-impl_as_primitive!(f32 => { f32, f64 });
-impl_as_primitive!(f64 => { f32, f64 });
-impl_as_primitive!(char => { char });
-impl_as_primitive!(bool => {});
diff --git a/vendor/num-traits/src/float.rs b/vendor/num-traits/src/float.rs
deleted file mode 100644
index 87f8387..0000000
--- a/vendor/num-traits/src/float.rs
+++ /dev/null
@@ -1,2344 +0,0 @@
-use core::num::FpCategory;
-use core::ops::{Add, Div, Neg};
-
-use core::f32;
-use core::f64;
-
-use crate::{Num, NumCast, ToPrimitive};
-
-/// Generic trait for floating point numbers that works with `no_std`.
-///
-/// This trait implements a subset of the `Float` trait.
-pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
- /// Returns positive infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::infinity() == x);
- /// }
- ///
- /// check(f32::INFINITY);
- /// check(f64::INFINITY);
- /// ```
- fn infinity() -> Self;
-
- /// Returns negative infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::neg_infinity() == x);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_infinity() -> Self;
-
- /// Returns NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>() {
- /// let n = T::nan();
- /// assert!(n != n);
- /// }
- ///
- /// check::<f32>();
- /// check::<f64>();
- /// ```
- fn nan() -> Self;
-
- /// Returns `-0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(n: T) {
- /// let z = T::neg_zero();
- /// assert!(z.is_zero());
- /// assert!(T::one() / z == n);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_zero() -> Self;
-
- /// Returns the smallest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_value() == x);
- /// }
- ///
- /// check(f32::MIN);
- /// check(f64::MIN);
- /// ```
- fn min_value() -> Self;
-
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_positive_value() == x);
- /// }
- ///
- /// check(f32::MIN_POSITIVE);
- /// check(f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
-
- /// Returns epsilon, a small positive value.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::epsilon() == x);
- /// }
- ///
- /// check(f32::EPSILON);
- /// check(f64::EPSILON);
- /// ```
- fn epsilon() -> Self;
-
- /// Returns the largest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::max_value() == x);
- /// }
- ///
- /// check(f32::MAX);
- /// check(f64::MAX);
- /// ```
- fn max_value() -> Self;
-
- /// Returns `true` if the number is NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_nan() == p);
- /// }
- ///
- /// check(f32::NAN, true);
- /// check(f32::INFINITY, false);
- /// check(f64::NAN, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- #[allow(clippy::eq_op)]
- fn is_nan(self) -> bool {
- self != self
- }
-
- /// Returns `true` if the number is infinite.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_infinite() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::NEG_INFINITY, true);
- /// check(f32::NAN, false);
- /// check(f64::INFINITY, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_infinite(self) -> bool {
- self == Self::infinity() || self == Self::neg_infinity()
- }
-
- /// Returns `true` if the number is neither infinite or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_finite() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(f64::NAN, false);
- /// ```
- #[inline]
- fn is_finite(self) -> bool {
- !(self.is_nan() || self.is_infinite())
- }
-
- /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_normal() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_normal(self) -> bool {
- self.classify() == FpCategory::Normal
- }
-
- /// Returns `true` if the number is [subnormal].
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::f64;
- ///
- /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
- /// let max = f64::MAX;
- /// let lower_than_min = 1.0e-308_f64;
- /// let zero = 0.0_f64;
- ///
- /// assert!(!min.is_subnormal());
- /// assert!(!max.is_subnormal());
- ///
- /// assert!(!zero.is_subnormal());
- /// assert!(!f64::NAN.is_subnormal());
- /// assert!(!f64::INFINITY.is_subnormal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(lower_than_min.is_subnormal());
- /// ```
- /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number
- #[inline]
- fn is_subnormal(self) -> bool {
- self.classify() == FpCategory::Subnormal
- }
-
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- /// use std::num::FpCategory;
- ///
- /// fn check<T: FloatCore>(x: T, c: FpCategory) {
- /// assert!(x.classify() == c);
- /// }
- ///
- /// check(f32::INFINITY, FpCategory::Infinite);
- /// check(f32::MAX, FpCategory::Normal);
- /// check(f64::NAN, FpCategory::Nan);
- /// check(f64::MIN_POSITIVE, FpCategory::Normal);
- /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
- /// check(0.0f64, FpCategory::Zero);
- /// ```
- fn classify(self) -> FpCategory;
-
- /// Returns the largest integer less than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.floor() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -1.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -2.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn floor(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self < Self::zero() {
- self - f - Self::one()
- } else {
- self - f
- }
- }
-
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.ceil() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 1.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 2.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn ceil(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- self - f + Self::one()
- } else {
- self - f
- }
- }
-
- /// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.round() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.4f32, 0.0);
- /// check(0.5f32, 1.0);
- /// check(0.6f32, 1.0);
- /// check(-0.4f64, 0.0);
- /// check(-0.5f64, -1.0);
- /// check(-0.6f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn round(self) -> Self {
- let one = Self::one();
- let h = Self::from(0.5).expect("Unable to cast from 0.5");
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- if f < h {
- self - f
- } else {
- self - f + one
- }
- } else if -f < h {
- self - f
- } else {
- self - f - one
- }
- }
-
- /// Return the integer part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.trunc() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn trunc(self) -> Self {
- let f = self.fract();
- if f.is_nan() {
- self
- } else {
- self - f
- }
- }
-
- /// Returns the fractional part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.fract() == y);
- /// }
- ///
- /// check(f32::MAX, 0.0);
- /// check(0.75f32, 0.75);
- /// check(1.0f32, 0.0);
- /// check(1.25f32, 0.25);
- /// check(-0.0f64, 0.0);
- /// check(-0.75f64, -0.75);
- /// check(-1.0f64, 0.0);
- /// check(-1.25f64, -0.25);
- /// check(f64::MIN, 0.0);
- /// ```
- #[inline]
- fn fract(self) -> Self {
- if self.is_zero() {
- Self::zero()
- } else {
- self % Self::one()
- }
- }
-
- /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
- /// number is `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.abs() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(1.0f32, 1.0);
- /// check(0.0f64, 0.0);
- /// check(-0.0f64, 0.0);
- /// check(-1.0f64, 1.0);
- /// check(f64::MIN, f64::MAX);
- /// ```
- #[inline]
- fn abs(self) -> Self {
- if self.is_sign_positive() {
- return self;
- }
- if self.is_sign_negative() {
- return -self;
- }
- Self::nan()
- }
-
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
- /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.signum() == y);
- /// }
- ///
- /// check(f32::INFINITY, 1.0);
- /// check(3.0f32, 1.0);
- /// check(0.0f32, 1.0);
- /// check(-0.0f64, -1.0);
- /// check(-3.0f64, -1.0);
- /// check(f64::MIN, -1.0);
- /// ```
- #[inline]
- fn signum(self) -> Self {
- if self.is_nan() {
- Self::nan()
- } else if self.is_sign_negative() {
- -Self::one()
- } else {
- Self::one()
- }
- }
-
- /// Returns `true` if `self` is positive, including `+0.0` and
- /// `FloatCore::infinity()`, and `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_positive() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::MAX, true);
- /// check(0.0f32, true);
- /// check(-0.0f64, false);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(f64::NAN, true);
- /// check(-f64::NAN, false);
- /// ```
- #[inline]
- fn is_sign_positive(self) -> bool {
- !self.is_sign_negative()
- }
-
- /// Returns `true` if `self` is negative, including `-0.0` and
- /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_negative() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, false);
- /// check(0.0f32, false);
- /// check(-0.0f64, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(f64::MIN_POSITIVE, false);
- /// check(f64::NAN, false);
- /// check(-f64::NAN, true);
- /// ```
- #[inline]
- fn is_sign_negative(self) -> bool {
- let (_, _, sign) = self.integer_decode();
- sign < 0
- }
-
- /// Returns the minimum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, min: T) {
- /// assert!(x.min(y) == min);
- /// }
- ///
- /// check(1.0f32, 2.0, 1.0);
- /// check(f32::NAN, 2.0, 2.0);
- /// check(1.0f64, -2.0, -2.0);
- /// check(1.0f64, f64::NAN, 1.0);
- /// ```
- #[inline]
- fn min(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self < other {
- self
- } else {
- other
- }
- }
-
- /// Returns the maximum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, max: T) {
- /// assert!(x.max(y) == max);
- /// }
- ///
- /// check(1.0f32, 2.0, 2.0);
- /// check(1.0f32, f32::NAN, 1.0);
- /// check(-1.0f64, 2.0, 2.0);
- /// check(-1.0f64, f64::NAN, -1.0);
- /// ```
- #[inline]
- fn max(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self > other {
- self
- } else {
- other
- }
- }
-
- /// Returns the reciprocal (multiplicative inverse) of the number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.recip() == y);
- /// assert!(y.recip() == x);
- /// }
- ///
- /// check(f32::INFINITY, 0.0);
- /// check(2.0f32, 0.5);
- /// check(-0.25f64, -4.0);
- /// check(-0.0f64, f64::NEG_INFINITY);
- /// ```
- #[inline]
- fn recip(self) -> Self {
- Self::one() / self
- }
-
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
- /// assert!(x.powi(exp) == powi);
- /// }
- ///
- /// check(9.0f32, 2, 81.0);
- /// check(1.0f32, -2, 1.0);
- /// check(10.0f64, 20, 1e20);
- /// check(4.0f64, -2, 0.0625);
- /// check(-1.0f64, std::i32::MIN, 1.0);
- /// ```
- #[inline]
- fn powi(mut self, mut exp: i32) -> Self {
- if exp < 0 {
- exp = exp.wrapping_neg();
- self = self.recip();
- }
- // It should always be possible to convert a positive `i32` to a `usize`.
- // Note, `i32::MIN` will wrap and still be negative, so we need to convert
- // to `u32` without sign-extension before growing to `usize`.
- super::pow(self, (exp as u32).to_usize().unwrap())
- }
-
- /// Converts to degrees, assuming the number is in radians.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(rad: T, deg: T) {
- /// assert!(rad.to_degrees() == deg);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(f32::consts::PI, 180.0);
- /// check(f64::consts::FRAC_PI_4, 45.0);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_degrees(self) -> Self;
-
- /// Converts to radians, assuming the number is in degrees.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(deg: T, rad: T) {
- /// assert!(deg.to_radians() == rad);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(180.0, f32::consts::PI);
- /// check(45.0, f64::consts::FRAC_PI_4);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_radians(self) -> Self;
-
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
- /// let (mantissa, exponent, sign) = x.integer_decode();
- /// assert_eq!(mantissa, m);
- /// assert_eq!(exponent, e);
- /// assert_eq!(sign, s);
- /// }
- ///
- /// check(2.0f32, 1 << 23, -22, 1);
- /// check(-2.0f32, 1 << 23, -22, -1);
- /// check(f32::INFINITY, 1 << 23, 105, 1);
- /// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
-}
-
-impl FloatCore for f32 {
- constant! {
- infinity() -> f32::INFINITY;
- neg_infinity() -> f32::NEG_INFINITY;
- nan() -> f32::NAN;
- neg_zero() -> -0.0;
- min_value() -> f32::MIN;
- min_positive_value() -> f32::MIN_POSITIVE;
- epsilon() -> f32::EPSILON;
- max_value() -> f32::MAX;
- }
-
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f32(self)
- }
-
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
-
- #[cfg(has_is_subnormal)]
- forward! {
- Self::is_subnormal(self) -> bool;
- }
-
- #[cfg(feature = "std")]
- forward! {
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- }
-
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- forward! {
- libm::floorf as floor(self) -> Self;
- libm::ceilf as ceil(self) -> Self;
- libm::roundf as round(self) -> Self;
- libm::truncf as trunc(self) -> Self;
- libm::fabsf as abs(self) -> Self;
- }
-
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- #[inline]
- fn fract(self) -> Self {
- self - libm::truncf(self)
- }
-}
-
-impl FloatCore for f64 {
- constant! {
- infinity() -> f64::INFINITY;
- neg_infinity() -> f64::NEG_INFINITY;
- nan() -> f64::NAN;
- neg_zero() -> -0.0;
- min_value() -> f64::MIN;
- min_positive_value() -> f64::MIN_POSITIVE;
- epsilon() -> f64::EPSILON;
- max_value() -> f64::MAX;
- }
-
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f64(self)
- }
-
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
-
- #[cfg(has_is_subnormal)]
- forward! {
- Self::is_subnormal(self) -> bool;
- }
-
- #[cfg(feature = "std")]
- forward! {
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- }
-
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- forward! {
- libm::floor as floor(self) -> Self;
- libm::ceil as ceil(self) -> Self;
- libm::round as round(self) -> Self;
- libm::trunc as trunc(self) -> Self;
- libm::fabs as abs(self) -> Self;
- }
-
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- #[inline]
- fn fract(self) -> Self {
- self - libm::trunc(self)
- }
-}
-
-// FIXME: these doctests aren't actually helpful, because they're using and
-// testing the inherent methods directly, not going through `Float`.
-
-/// Generic trait for floating point numbers
-///
-/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
-#[cfg(any(feature = "std", feature = "libm"))]
-pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num_traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
-
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
-
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
-
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self {
- Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
- }
-
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
-
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
-
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
-
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
-
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number
- fn is_normal(self) -> bool;
-
- /// Returns `true` if the number is [subnormal].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
- /// let max = f64::MAX;
- /// let lower_than_min = 1.0e-308_f64;
- /// let zero = 0.0_f64;
- ///
- /// assert!(!min.is_subnormal());
- /// assert!(!max.is_subnormal());
- ///
- /// assert!(!zero.is_subnormal());
- /// assert!(!f64::NAN.is_subnormal());
- /// assert!(!f64::INFINITY.is_subnormal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(lower_than_min.is_subnormal());
- /// ```
- /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number
- #[inline]
- fn is_subnormal(self) -> bool {
- self.classify() == FpCategory::Subnormal
- }
-
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
-
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
-
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
-
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
-
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
-
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
-
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
-
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
-
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(nan.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
-
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and `-Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// assert!(neg_nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
-
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error, yielding a more accurate result than an unfused multiply-add.
- ///
- /// Using `mul_add` can be more performant than an unfused multiply-add if
- /// the target architecture has a dedicated `fma` CPU instruction.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
-
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
-
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
-
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
-
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
-
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
-
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
-
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
-
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
-
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
-
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_degrees(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * ninety / halfpi
- }
-
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_radians(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * halfpi / ninety
- }
-
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
-
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
-
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
-
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
-
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
-
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
-
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
-
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
-
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
-
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
-
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
-
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
-
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
-
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
-
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
-
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
-
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
-
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
-
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
-
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
-
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
-
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
-
- /// Returns a number composed of the magnitude of `self` and the sign of
- /// `sign`.
- ///
- /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
- /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of
- /// `sign` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.5_f32;
- ///
- /// assert_eq!(f.copysign(0.42), 3.5_f32);
- /// assert_eq!(f.copysign(-0.42), -3.5_f32);
- /// assert_eq!((-f).copysign(0.42), 3.5_f32);
- /// assert_eq!((-f).copysign(-0.42), -3.5_f32);
- ///
- /// assert!(f32::nan().copysign(1.0).is_nan());
- /// ```
- fn copysign(self, sign: Self) -> Self {
- if self.is_sign_negative() == sign.is_sign_negative() {
- self
- } else {
- self.neg()
- }
- }
-}
-
-#[cfg(feature = "std")]
-macro_rules! float_impl_std {
- ($T:ident $decode:ident) => {
- impl Float for $T {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
-
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
-
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
-
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::mul_add(self, a: Self, b: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::powf(self, n: Self) -> Self;
- Self::sqrt(self) -> Self;
- Self::exp(self) -> Self;
- Self::exp2(self) -> Self;
- Self::ln(self) -> Self;
- Self::log(self, base: Self) -> Self;
- Self::log2(self) -> Self;
- Self::log10(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::min(self, other: Self) -> Self;
- Self::cbrt(self) -> Self;
- Self::hypot(self, other: Self) -> Self;
- Self::sin(self) -> Self;
- Self::cos(self) -> Self;
- Self::tan(self) -> Self;
- Self::asin(self) -> Self;
- Self::acos(self) -> Self;
- Self::atan(self) -> Self;
- Self::atan2(self, other: Self) -> Self;
- Self::sin_cos(self) -> (Self, Self);
- Self::exp_m1(self) -> Self;
- Self::ln_1p(self) -> Self;
- Self::sinh(self) -> Self;
- Self::cosh(self) -> Self;
- Self::tanh(self) -> Self;
- Self::asinh(self) -> Self;
- Self::acosh(self) -> Self;
- Self::atanh(self) -> Self;
- }
-
- #[cfg(has_copysign)]
- forward! {
- Self::copysign(self, sign: Self) -> Self;
- }
-
- #[cfg(has_is_subnormal)]
- forward! {
- Self::is_subnormal(self) -> bool;
- }
- }
- };
-}
-
-#[cfg(all(not(feature = "std"), feature = "libm"))]
-macro_rules! float_impl_libm {
- ($T:ident $decode:ident) => {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
-
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
-
- #[inline]
- fn fract(self) -> Self {
- self - Float::trunc(self)
- }
-
- #[inline]
- fn log(self, base: Self) -> Self {
- self.ln() / base.ln()
- }
-
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
-
- #[cfg(has_is_subnormal)]
- forward! {
- Self::is_subnormal(self) -> bool;
- }
-
- forward! {
- FloatCore::signum(self) -> Self;
- FloatCore::powi(self, n: i32) -> Self;
- }
- };
-}
-
-fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- let bits: u32 = f.to_bits();
- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
-}
-
-fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- let bits: u64 = f.to_bits();
- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
-}
-
-#[cfg(feature = "std")]
-float_impl_std!(f32 integer_decode_f32);
-#[cfg(feature = "std")]
-float_impl_std!(f64 integer_decode_f64);
-
-#[cfg(all(not(feature = "std"), feature = "libm"))]
-impl Float for f32 {
- float_impl_libm!(f32 integer_decode_f32);
-
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- libm::fdimf(self, other)
- }
-
- forward! {
- libm::floorf as floor(self) -> Self;
- libm::ceilf as ceil(self) -> Self;
- libm::roundf as round(self) -> Self;
- libm::truncf as trunc(self) -> Self;
- libm::fabsf as abs(self) -> Self;
- libm::fmaf as mul_add(self, a: Self, b: Self) -> Self;
- libm::powf as powf(self, n: Self) -> Self;
- libm::sqrtf as sqrt(self) -> Self;
- libm::expf as exp(self) -> Self;
- libm::exp2f as exp2(self) -> Self;
- libm::logf as ln(self) -> Self;
- libm::log2f as log2(self) -> Self;
- libm::log10f as log10(self) -> Self;
- libm::cbrtf as cbrt(self) -> Self;
- libm::hypotf as hypot(self, other: Self) -> Self;
- libm::sinf as sin(self) -> Self;
- libm::cosf as cos(self) -> Self;
- libm::tanf as tan(self) -> Self;
- libm::asinf as asin(self) -> Self;
- libm::acosf as acos(self) -> Self;
- libm::atanf as atan(self) -> Self;
- libm::atan2f as atan2(self, other: Self) -> Self;
- libm::sincosf as sin_cos(self) -> (Self, Self);
- libm::expm1f as exp_m1(self) -> Self;
- libm::log1pf as ln_1p(self) -> Self;
- libm::sinhf as sinh(self) -> Self;
- libm::coshf as cosh(self) -> Self;
- libm::tanhf as tanh(self) -> Self;
- libm::asinhf as asinh(self) -> Self;
- libm::acoshf as acosh(self) -> Self;
- libm::atanhf as atanh(self) -> Self;
- libm::copysignf as copysign(self, other: Self) -> Self;
- }
-}
-
-#[cfg(all(not(feature = "std"), feature = "libm"))]
-impl Float for f64 {
- float_impl_libm!(f64 integer_decode_f64);
-
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- libm::fdim(self, other)
- }
-
- forward! {
- libm::floor as floor(self) -> Self;
- libm::ceil as ceil(self) -> Self;
- libm::round as round(self) -> Self;
- libm::trunc as trunc(self) -> Self;
- libm::fabs as abs(self) -> Self;
- libm::fma as mul_add(self, a: Self, b: Self) -> Self;
- libm::pow as powf(self, n: Self) -> Self;
- libm::sqrt as sqrt(self) -> Self;
- libm::exp as exp(self) -> Self;
- libm::exp2 as exp2(self) -> Self;
- libm::log as ln(self) -> Self;
- libm::log2 as log2(self) -> Self;
- libm::log10 as log10(self) -> Self;
- libm::cbrt as cbrt(self) -> Self;
- libm::hypot as hypot(self, other: Self) -> Self;
- libm::sin as sin(self) -> Self;
- libm::cos as cos(self) -> Self;
- libm::tan as tan(self) -> Self;
- libm::asin as asin(self) -> Self;
- libm::acos as acos(self) -> Self;
- libm::atan as atan(self) -> Self;
- libm::atan2 as atan2(self, other: Self) -> Self;
- libm::sincos as sin_cos(self) -> (Self, Self);
- libm::expm1 as exp_m1(self) -> Self;
- libm::log1p as ln_1p(self) -> Self;
- libm::sinh as sinh(self) -> Self;
- libm::cosh as cosh(self) -> Self;
- libm::tanh as tanh(self) -> Self;
- libm::asinh as asinh(self) -> Self;
- libm::acosh as acosh(self) -> Self;
- libm::atanh as atanh(self) -> Self;
- libm::copysign as copysign(self, sign: Self) -> Self;
- }
-}
-
-macro_rules! float_const_impl {
- ($(#[$doc:meta] $constant:ident,)+) => (
- #[allow(non_snake_case)]
- pub trait FloatConst {
- $(#[$doc] fn $constant() -> Self;)+
- #[doc = "Return the full circle constant `τ`."]
- #[inline]
- fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> {
- Self::PI() + Self::PI()
- }
- #[doc = "Return `log10(2.0)`."]
- #[inline]
- fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> {
- Self::LN_2() / Self::LN_10()
- }
- #[doc = "Return `log2(10.0)`."]
- #[inline]
- fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> {
- Self::LN_10() / Self::LN_2()
- }
- }
- float_const_impl! { @float f32, $($constant,)+ }
- float_const_impl! { @float f64, $($constant,)+ }
- );
- (@float $T:ident, $($constant:ident,)+) => (
- impl FloatConst for $T {
- constant! {
- $( $constant() -> $T::consts::$constant; )+
- TAU() -> 6.28318530717958647692528676655900577;
- LOG10_2() -> 0.301029995663981195213738894724493027;
- LOG2_10() -> 3.32192809488736234787031942948939018;
- }
- }
- );
-}
-
-float_const_impl! {
- #[doc = "Return Euler’s number."]
- E,
- #[doc = "Return `1.0 / π`."]
- FRAC_1_PI,
- #[doc = "Return `1.0 / sqrt(2.0)`."]
- FRAC_1_SQRT_2,
- #[doc = "Return `2.0 / π`."]
- FRAC_2_PI,
- #[doc = "Return `2.0 / sqrt(π)`."]
- FRAC_2_SQRT_PI,
- #[doc = "Return `π / 2.0`."]
- FRAC_PI_2,
- #[doc = "Return `π / 3.0`."]
- FRAC_PI_3,
- #[doc = "Return `π / 4.0`."]
- FRAC_PI_4,
- #[doc = "Return `π / 6.0`."]
- FRAC_PI_6,
- #[doc = "Return `π / 8.0`."]
- FRAC_PI_8,
- #[doc = "Return `ln(10.0)`."]
- LN_10,
- #[doc = "Return `ln(2.0)`."]
- LN_2,
- #[doc = "Return `log10(e)`."]
- LOG10_E,
- #[doc = "Return `log2(e)`."]
- LOG2_E,
- #[doc = "Return Archimedes’ constant `π`."]
- PI,
- #[doc = "Return `sqrt(2.0)`."]
- SQRT_2,
-}
-
-#[cfg(test)]
-mod tests {
- use core::f64::consts;
-
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
- (0.0, 0.),
- (22.5, consts::FRAC_PI_8),
- (30.0, consts::FRAC_PI_6),
- (45.0, consts::FRAC_PI_4),
- (60.0, consts::FRAC_PI_3),
- (90.0, consts::FRAC_PI_2),
- (180.0, consts::PI),
- ];
-
- #[test]
- fn convert_deg_rad() {
- use crate::float::FloatCore;
-
- for &(deg, rad) in &DEG_RAD_PAIRS {
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
-
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
-
- #[cfg(any(feature = "std", feature = "libm"))]
- #[test]
- fn convert_deg_rad_std() {
- for &(deg, rad) in &DEG_RAD_PAIRS {
- use crate::Float;
-
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
-
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
-
- #[test]
- fn to_degrees_rounding() {
- use crate::float::FloatCore;
-
- assert_eq!(
- FloatCore::to_degrees(1_f32),
- 57.2957795130823208767981548141051703
- );
- }
-
- #[test]
- #[cfg(any(feature = "std", feature = "libm"))]
- fn extra_logs() {
- use crate::float::{Float, FloatConst};
-
- fn check<F: Float + FloatConst>(diff: F) {
- let _2 = F::from(2.0).unwrap();
- assert!((F::LOG10_2() - F::log10(_2)).abs() < diff);
- assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff);
-
- let _10 = F::from(10.0).unwrap();
- assert!((F::LOG2_10() - F::log2(_10)).abs() < diff);
- assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff);
- }
-
- check::<f32>(1e-6);
- check::<f64>(1e-12);
- }
-
- #[test]
- #[cfg(any(feature = "std", feature = "libm"))]
- fn copysign() {
- use crate::float::Float;
- test_copysign_generic(2.0_f32, -2.0_f32, f32::nan());
- test_copysign_generic(2.0_f64, -2.0_f64, f64::nan());
- test_copysignf(2.0_f32, -2.0_f32, f32::nan());
- }
-
- #[cfg(any(feature = "std", feature = "libm"))]
- fn test_copysignf(p: f32, n: f32, nan: f32) {
- use crate::float::Float;
- use core::ops::Neg;
-
- assert!(p.is_sign_positive());
- assert!(n.is_sign_negative());
- assert!(nan.is_nan());
-
- assert_eq!(p, Float::copysign(p, p));
- assert_eq!(p.neg(), Float::copysign(p, n));
-
- assert_eq!(n, Float::copysign(n, n));
- assert_eq!(n.neg(), Float::copysign(n, p));
-
- assert!(Float::copysign(nan, p).is_sign_positive());
- assert!(Float::copysign(nan, n).is_sign_negative());
- }
-
- #[cfg(any(feature = "std", feature = "libm"))]
- fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) {
- assert!(p.is_sign_positive());
- assert!(n.is_sign_negative());
- assert!(nan.is_nan());
- assert!(!nan.is_subnormal());
-
- assert_eq!(p, p.copysign(p));
- assert_eq!(p.neg(), p.copysign(n));
-
- assert_eq!(n, n.copysign(n));
- assert_eq!(n.neg(), n.copysign(p));
-
- assert!(nan.copysign(p).is_sign_positive());
- assert!(nan.copysign(n).is_sign_negative());
- }
-
- #[cfg(any(feature = "std", feature = "libm"))]
- fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() {
- let min_positive = F::min_positive_value();
- let lower_than_min = min_positive / F::from(2.0f32).unwrap();
- assert!(!min_positive.is_subnormal());
- assert!(lower_than_min.is_subnormal());
- }
-
- #[test]
- #[cfg(any(feature = "std", feature = "libm"))]
- fn subnormal() {
- test_subnormal::<f64>();
- test_subnormal::<f32>();
- }
-}
diff --git a/vendor/num-traits/src/identities.rs b/vendor/num-traits/src/identities.rs
deleted file mode 100644
index 2486cb1..0000000
--- a/vendor/num-traits/src/identities.rs
+++ /dev/null
@@ -1,202 +0,0 @@
-use core::num::Wrapping;
-use core::ops::{Add, Mul};
-
-/// Defines an additive identity element for `Self`.
-///
-/// # Laws
-///
-/// ```text
-/// a + 0 = a ∀ a ∈ Self
-/// 0 + a = a ∀ a ∈ Self
-/// ```
-pub trait Zero: Sized + Add<Self, Output = Self> {
- /// Returns the additive identity element of `Self`, `0`.
- /// # Purity
- ///
- /// This function should return the same result at all times regardless of
- /// external mutable state, for example values stored in TLS or in
- /// `static mut`s.
- // This cannot be an associated constant, because of bignums.
- fn zero() -> Self;
-
- /// Sets `self` to the additive identity element of `Self`, `0`.
- fn set_zero(&mut self) {
- *self = Zero::zero();
- }
-
- /// Returns `true` if `self` is equal to the additive identity.
- fn is_zero(&self) -> bool;
-}
-
-macro_rules! zero_impl {
- ($t:ty, $v:expr) => {
- impl Zero for $t {
- #[inline]
- fn zero() -> $t {
- $v
- }
- #[inline]
- fn is_zero(&self) -> bool {
- *self == $v
- }
- }
- };
-}
-
-zero_impl!(usize, 0);
-zero_impl!(u8, 0);
-zero_impl!(u16, 0);
-zero_impl!(u32, 0);
-zero_impl!(u64, 0);
-zero_impl!(u128, 0);
-
-zero_impl!(isize, 0);
-zero_impl!(i8, 0);
-zero_impl!(i16, 0);
-zero_impl!(i32, 0);
-zero_impl!(i64, 0);
-zero_impl!(i128, 0);
-
-zero_impl!(f32, 0.0);
-zero_impl!(f64, 0.0);
-
-impl<T: Zero> Zero for Wrapping<T>
-where
- Wrapping<T>: Add<Output = Wrapping<T>>,
-{
- fn is_zero(&self) -> bool {
- self.0.is_zero()
- }
-
- fn set_zero(&mut self) {
- self.0.set_zero();
- }
-
- fn zero() -> Self {
- Wrapping(T::zero())
- }
-}
-
-/// Defines a multiplicative identity element for `Self`.
-///
-/// # Laws
-///
-/// ```text
-/// a * 1 = a ∀ a ∈ Self
-/// 1 * a = a ∀ a ∈ Self
-/// ```
-pub trait One: Sized + Mul<Self, Output = Self> {
- /// Returns the multiplicative identity element of `Self`, `1`.
- ///
- /// # Purity
- ///
- /// This function should return the same result at all times regardless of
- /// external mutable state, for example values stored in TLS or in
- /// `static mut`s.
- // This cannot be an associated constant, because of bignums.
- fn one() -> Self;
-
- /// Sets `self` to the multiplicative identity element of `Self`, `1`.
- fn set_one(&mut self) {
- *self = One::one();
- }
-
- /// Returns `true` if `self` is equal to the multiplicative identity.
- ///
- /// For performance reasons, it's best to implement this manually.
- /// After a semver bump, this method will be required, and the
- /// `where Self: PartialEq` bound will be removed.
- #[inline]
- fn is_one(&self) -> bool
- where
- Self: PartialEq,
- {
- *self == Self::one()
- }
-}
-
-macro_rules! one_impl {
- ($t:ty, $v:expr) => {
- impl One for $t {
- #[inline]
- fn one() -> $t {
- $v
- }
- #[inline]
- fn is_one(&self) -> bool {
- *self == $v
- }
- }
- };
-}
-
-one_impl!(usize, 1);
-one_impl!(u8, 1);
-one_impl!(u16, 1);
-one_impl!(u32, 1);
-one_impl!(u64, 1);
-one_impl!(u128, 1);
-
-one_impl!(isize, 1);
-one_impl!(i8, 1);
-one_impl!(i16, 1);
-one_impl!(i32, 1);
-one_impl!(i64, 1);
-one_impl!(i128, 1);
-
-one_impl!(f32, 1.0);
-one_impl!(f64, 1.0);
-
-impl<T: One> One for Wrapping<T>
-where
- Wrapping<T>: Mul<Output = Wrapping<T>>,
-{
- fn set_one(&mut self) {
- self.0.set_one();
- }
-
- fn one() -> Self {
- Wrapping(T::one())
- }
-}
-
-// Some helper functions provided for backwards compatibility.
-
-/// Returns the additive identity, `0`.
-#[inline(always)]
-pub fn zero<T: Zero>() -> T {
- Zero::zero()
-}
-
-/// Returns the multiplicative identity, `1`.
-#[inline(always)]
-pub fn one<T: One>() -> T {
- One::one()
-}
-
-#[test]
-fn wrapping_identities() {
- macro_rules! test_wrapping_identities {
- ($($t:ty)+) => {
- $(
- assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
- assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
- assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
- assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
- )+
- };
- }
-
- test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
-}
-
-#[test]
-fn wrapping_is_zero() {
- fn require_zero<T: Zero>(_: &T) {}
- require_zero(&Wrapping(42));
-}
-#[test]
-fn wrapping_is_one() {
- fn require_one<T: One>(_: &T) {}
- require_one(&Wrapping(42));
-}
diff --git a/vendor/num-traits/src/int.rs b/vendor/num-traits/src/int.rs
deleted file mode 100644
index e3ca72c..0000000
--- a/vendor/num-traits/src/int.rs
+++ /dev/null
@@ -1,565 +0,0 @@
-use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};
-
-use crate::bounds::Bounded;
-use crate::ops::checked::*;
-use crate::ops::saturating::Saturating;
-use crate::{Num, NumCast};
-
-/// Generic trait for primitive integers.
-///
-/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
-/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
-/// bitwise operators and non-wrapping arithmetic.
-///
-/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
-/// types implementing this trait behave like primitive types that are passed by value by default
-/// and behave like builtin integers. Furthermore, the types are expected to expose the integer
-/// value in binary representation and support bitwise operators. The standard bitwise operations
-/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
-/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
-/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
-/// `PrimInt::to_be()`).
-///
-/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
-/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
-/// compile-time.
-///
-/// While a default implementation for all builtin primitive integers is provided, the trait is in
-/// no way restricted to these. Other integer types that fulfil the requirements are free to
-/// implement the trait was well.
-///
-/// This trait and many of the method names originate in the unstable `core::num::Int` trait from
-/// the rust standard library. The original trait was never stabilized and thus removed from the
-/// standard library.
-pub trait PrimInt:
- Sized
- + Copy
- + Num
- + NumCast
- + Bounded
- + PartialOrd
- + Ord
- + Eq
- + Not<Output = Self>
- + BitAnd<Output = Self>
- + BitOr<Output = Self>
- + BitXor<Output = Self>
- + Shl<usize, Output = Self>
- + Shr<usize, Output = Self>
- + CheckedAdd<Output = Self>
- + CheckedSub<Output = Self>
- + CheckedMul<Output = Self>
- + CheckedDiv<Output = Self>
- + Saturating
-{
- /// Returns the number of ones in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_ones(), 3);
- /// ```
- fn count_ones(self) -> u32;
-
- /// Returns the number of zeros in the binary representation of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b01001100u8;
- ///
- /// assert_eq!(n.count_zeros(), 5);
- /// ```
- fn count_zeros(self) -> u32;
-
- /// Returns the number of leading ones in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xF00Du16;
- ///
- /// assert_eq!(n.leading_ones(), 4);
- /// ```
- fn leading_ones(self) -> u32 {
- (!self).leading_zeros()
- }
-
- /// Returns the number of leading zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.leading_zeros(), 10);
- /// ```
- fn leading_zeros(self) -> u32;
-
- /// Returns the number of trailing ones in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xBEEFu16;
- ///
- /// assert_eq!(n.trailing_ones(), 4);
- /// ```
- fn trailing_ones(self) -> u32 {
- (!self).trailing_zeros()
- }
-
- /// Returns the number of trailing zeros in the binary representation
- /// of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0b0101000u16;
- ///
- /// assert_eq!(n.trailing_zeros(), 3);
- /// ```
- fn trailing_zeros(self) -> u32;
-
- /// Shifts the bits to the left by a specified amount, `n`, wrapping
- /// the truncated bits to the end of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0x3456789ABCDEF012u64;
- ///
- /// assert_eq!(n.rotate_left(12), m);
- /// ```
- fn rotate_left(self, n: u32) -> Self;
-
- /// Shifts the bits to the right by a specified amount, `n`, wrapping
- /// the truncated bits to the beginning of the resulting integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xDEF0123456789ABCu64;
- ///
- /// assert_eq!(n.rotate_right(12), m);
- /// ```
- fn rotate_right(self, n: u32) -> Self;
-
- /// Shifts the bits to the left by a specified amount, `n`, filling
- /// zeros in the least significant bits.
- ///
- /// This is bitwise equivalent to signed `Shl`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0x3456789ABCDEF000u64;
- ///
- /// assert_eq!(n.signed_shl(12), m);
- /// ```
- fn signed_shl(self, n: u32) -> Self;
-
- /// Shifts the bits to the right by a specified amount, `n`, copying
- /// the "sign bit" in the most significant bits even for unsigned types.
- ///
- /// This is bitwise equivalent to signed `Shr`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0xFEDCBA9876543210u64;
- /// let m = 0xFFFFEDCBA9876543u64;
- ///
- /// assert_eq!(n.signed_shr(12), m);
- /// ```
- fn signed_shr(self, n: u32) -> Self;
-
- /// Shifts the bits to the left by a specified amount, `n`, filling
- /// zeros in the least significant bits.
- ///
- /// This is bitwise equivalent to unsigned `Shl`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFi64;
- /// let m = 0x3456789ABCDEF000i64;
- ///
- /// assert_eq!(n.unsigned_shl(12), m);
- /// ```
- fn unsigned_shl(self, n: u32) -> Self;
-
- /// Shifts the bits to the right by a specified amount, `n`, filling
- /// zeros in the most significant bits.
- ///
- /// This is bitwise equivalent to unsigned `Shr`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = -8i8; // 0b11111000
- /// let m = 62i8; // 0b00111110
- ///
- /// assert_eq!(n.unsigned_shr(2), m);
- /// ```
- fn unsigned_shr(self, n: u32) -> Self;
-
- /// Reverses the byte order of the integer.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- /// let m = 0xEFCDAB8967452301u64;
- ///
- /// assert_eq!(n.swap_bytes(), m);
- /// ```
- fn swap_bytes(self) -> Self;
-
- /// Reverses the order of bits in the integer.
- ///
- /// The least significant bit becomes the most significant bit, second least-significant bit
- /// becomes second most-significant bit, etc.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x12345678u32;
- /// let m = 0x1e6a2c48u32;
- ///
- /// assert_eq!(n.reverse_bits(), m);
- /// assert_eq!(0u32.reverse_bits(), 0);
- /// ```
- fn reverse_bits(self) -> Self {
- reverse_bits_fallback(self)
- }
-
- /// Convert an integer from big endian to the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(u64::from_be(n), n)
- /// } else {
- /// assert_eq!(u64::from_be(n), n.swap_bytes())
- /// }
- /// ```
- fn from_be(x: Self) -> Self;
-
- /// Convert an integer from little endian to the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(u64::from_le(n), n)
- /// } else {
- /// assert_eq!(u64::from_le(n), n.swap_bytes())
- /// }
- /// ```
- fn from_le(x: Self) -> Self;
-
- /// Convert `self` to big endian from the target's endianness.
- ///
- /// On big endian this is a no-op. On little endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(n.to_be(), n)
- /// } else {
- /// assert_eq!(n.to_be(), n.swap_bytes())
- /// }
- /// ```
- fn to_be(self) -> Self;
-
- /// Convert `self` to little endian from the target's endianness.
- ///
- /// On little endian this is a no-op. On big endian the bytes are swapped.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// let n = 0x0123456789ABCDEFu64;
- ///
- /// if cfg!(target_endian = "little") {
- /// assert_eq!(n.to_le(), n)
- /// } else {
- /// assert_eq!(n.to_le(), n.swap_bytes())
- /// }
- /// ```
- fn to_le(self) -> Self;
-
- /// Raises self to the power of `exp`, using exponentiation by squaring.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::PrimInt;
- ///
- /// assert_eq!(2i32.pow(4), 16);
- /// ```
- fn pow(self, exp: u32) -> Self;
-}
-
-fn one_per_byte<P: PrimInt>() -> P {
- // i8, u8: return 0x01
- // i16, u16: return 0x0101 = (0x01 << 8) | 0x01
- // i32, u32: return 0x01010101 = (0x0101 << 16) | 0x0101
- // ...
- let mut ret = P::one();
- let mut shift = 8;
- let mut b = ret.count_zeros() >> 3;
- while b != 0 {
- ret = (ret << shift) | ret;
- shift <<= 1;
- b >>= 1;
- }
- ret
-}
-
-fn reverse_bits_fallback<P: PrimInt>(i: P) -> P {
- let rep_01: P = one_per_byte();
- let rep_03 = (rep_01 << 1) | rep_01;
- let rep_05 = (rep_01 << 2) | rep_01;
- let rep_0f = (rep_03 << 2) | rep_03;
- let rep_33 = (rep_03 << 4) | rep_03;
- let rep_55 = (rep_05 << 4) | rep_05;
-
- // code above only used to determine rep_0f, rep_33, rep_55;
- // optimizer should be able to do it in compile time
- let mut ret = i.swap_bytes();
- ret = ((ret & rep_0f) << 4) | ((ret >> 4) & rep_0f);
- ret = ((ret & rep_33) << 2) | ((ret >> 2) & rep_33);
- ret = ((ret & rep_55) << 1) | ((ret >> 1) & rep_55);
- ret
-}
-
-macro_rules! prim_int_impl {
- ($T:ty, $S:ty, $U:ty) => {
- impl PrimInt for $T {
- #[inline]
- fn count_ones(self) -> u32 {
- <$T>::count_ones(self)
- }
-
- #[inline]
- fn count_zeros(self) -> u32 {
- <$T>::count_zeros(self)
- }
-
- #[cfg(has_leading_trailing_ones)]
- #[inline]
- fn leading_ones(self) -> u32 {
- <$T>::leading_ones(self)
- }
-
- #[inline]
- fn leading_zeros(self) -> u32 {
- <$T>::leading_zeros(self)
- }
-
- #[cfg(has_leading_trailing_ones)]
- #[inline]
- fn trailing_ones(self) -> u32 {
- <$T>::trailing_ones(self)
- }
-
- #[inline]
- fn trailing_zeros(self) -> u32 {
- <$T>::trailing_zeros(self)
- }
-
- #[inline]
- fn rotate_left(self, n: u32) -> Self {
- <$T>::rotate_left(self, n)
- }
-
- #[inline]
- fn rotate_right(self, n: u32) -> Self {
- <$T>::rotate_right(self, n)
- }
-
- #[inline]
- fn signed_shl(self, n: u32) -> Self {
- ((self as $S) << n) as $T
- }
-
- #[inline]
- fn signed_shr(self, n: u32) -> Self {
- ((self as $S) >> n) as $T
- }
-
- #[inline]
- fn unsigned_shl(self, n: u32) -> Self {
- ((self as $U) << n) as $T
- }
-
- #[inline]
- fn unsigned_shr(self, n: u32) -> Self {
- ((self as $U) >> n) as $T
- }
-
- #[inline]
- fn swap_bytes(self) -> Self {
- <$T>::swap_bytes(self)
- }
-
- #[cfg(has_reverse_bits)]
- #[inline]
- fn reverse_bits(self) -> Self {
- <$T>::reverse_bits(self)
- }
-
- #[inline]
- fn from_be(x: Self) -> Self {
- <$T>::from_be(x)
- }
-
- #[inline]
- fn from_le(x: Self) -> Self {
- <$T>::from_le(x)
- }
-
- #[inline]
- fn to_be(self) -> Self {
- <$T>::to_be(self)
- }
-
- #[inline]
- fn to_le(self) -> Self {
- <$T>::to_le(self)
- }
-
- #[inline]
- fn pow(self, exp: u32) -> Self {
- <$T>::pow(self, exp)
- }
- }
- };
-}
-
-// prim_int_impl!(type, signed, unsigned);
-prim_int_impl!(u8, i8, u8);
-prim_int_impl!(u16, i16, u16);
-prim_int_impl!(u32, i32, u32);
-prim_int_impl!(u64, i64, u64);
-prim_int_impl!(u128, i128, u128);
-prim_int_impl!(usize, isize, usize);
-prim_int_impl!(i8, i8, u8);
-prim_int_impl!(i16, i16, u16);
-prim_int_impl!(i32, i32, u32);
-prim_int_impl!(i64, i64, u64);
-prim_int_impl!(i128, i128, u128);
-prim_int_impl!(isize, isize, usize);
-
-#[cfg(test)]
-mod tests {
- use crate::int::PrimInt;
-
- #[test]
- pub fn reverse_bits() {
- use core::{i16, i32, i64, i8};
-
- assert_eq!(
- PrimInt::reverse_bits(0x0123_4567_89ab_cdefu64),
- 0xf7b3_d591_e6a2_c480
- );
-
- assert_eq!(PrimInt::reverse_bits(0i8), 0);
- assert_eq!(PrimInt::reverse_bits(-1i8), -1);
- assert_eq!(PrimInt::reverse_bits(1i8), i8::MIN);
- assert_eq!(PrimInt::reverse_bits(i8::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i8), i8::MAX);
- assert_eq!(PrimInt::reverse_bits(i8::MAX), -2);
-
- assert_eq!(PrimInt::reverse_bits(0i16), 0);
- assert_eq!(PrimInt::reverse_bits(-1i16), -1);
- assert_eq!(PrimInt::reverse_bits(1i16), i16::MIN);
- assert_eq!(PrimInt::reverse_bits(i16::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i16), i16::MAX);
- assert_eq!(PrimInt::reverse_bits(i16::MAX), -2);
-
- assert_eq!(PrimInt::reverse_bits(0i32), 0);
- assert_eq!(PrimInt::reverse_bits(-1i32), -1);
- assert_eq!(PrimInt::reverse_bits(1i32), i32::MIN);
- assert_eq!(PrimInt::reverse_bits(i32::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i32), i32::MAX);
- assert_eq!(PrimInt::reverse_bits(i32::MAX), -2);
-
- assert_eq!(PrimInt::reverse_bits(0i64), 0);
- assert_eq!(PrimInt::reverse_bits(-1i64), -1);
- assert_eq!(PrimInt::reverse_bits(1i64), i64::MIN);
- assert_eq!(PrimInt::reverse_bits(i64::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i64), i64::MAX);
- assert_eq!(PrimInt::reverse_bits(i64::MAX), -2);
- }
-
- #[test]
- pub fn reverse_bits_i128() {
- use core::i128;
-
- assert_eq!(PrimInt::reverse_bits(0i128), 0);
- assert_eq!(PrimInt::reverse_bits(-1i128), -1);
- assert_eq!(PrimInt::reverse_bits(1i128), i128::MIN);
- assert_eq!(PrimInt::reverse_bits(i128::MIN), 1);
- assert_eq!(PrimInt::reverse_bits(-2i128), i128::MAX);
- assert_eq!(PrimInt::reverse_bits(i128::MAX), -2);
- }
-}
diff --git a/vendor/num-traits/src/lib.rs b/vendor/num-traits/src/lib.rs
deleted file mode 100644
index 54dab6e..0000000
--- a/vendor/num-traits/src/lib.rs
+++ /dev/null
@@ -1,635 +0,0 @@
-// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Numeric traits for generic mathematics
-//!
-//! ## Compatibility
-//!
-//! The `num-traits` crate is tested for rustc 1.31 and greater.
-
-#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
-#![deny(unconditional_recursion)]
-#![no_std]
-
-// Need to explicitly bring the crate in for inherent float methods
-#[cfg(feature = "std")]
-extern crate std;
-
-use core::fmt;
-use core::num::Wrapping;
-use core::ops::{Add, Div, Mul, Rem, Sub};
-use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
-
-pub use crate::bounds::Bounded;
-#[cfg(any(feature = "std", feature = "libm"))]
-pub use crate::float::Float;
-pub use crate::float::FloatConst;
-// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
-pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
-pub use crate::identities::{one, zero, One, Zero};
-pub use crate::int::PrimInt;
-pub use crate::ops::bytes::{FromBytes, ToBytes};
-pub use crate::ops::checked::{
- CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
-};
-pub use crate::ops::euclid::{CheckedEuclid, Euclid};
-pub use crate::ops::inv::Inv;
-pub use crate::ops::mul_add::{MulAdd, MulAddAssign};
-pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub};
-pub use crate::ops::wrapping::{
- WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
-};
-pub use crate::pow::{checked_pow, pow, Pow};
-pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned};
-
-#[macro_use]
-mod macros;
-
-pub mod bounds;
-pub mod cast;
-pub mod float;
-pub mod identities;
-pub mod int;
-pub mod ops;
-pub mod pow;
-pub mod real;
-pub mod sign;
-
-/// The base trait for numeric types, covering `0` and `1` values,
-/// comparisons, basic numeric operations, and string conversion.
-pub trait Num: PartialEq + Zero + One + NumOps {
- type FromStrRadixErr;
-
- /// Convert from a string and radix (typically `2..=36`).
- ///
- /// # Examples
- ///
- /// ```rust
- /// use num_traits::Num;
- ///
- /// let result = <i32 as Num>::from_str_radix("27", 10);
- /// assert_eq!(result, Ok(27));
- ///
- /// let result = <i32 as Num>::from_str_radix("foo", 10);
- /// assert!(result.is_err());
- /// ```
- ///
- /// # Supported radices
- ///
- /// The exact range of supported radices is at the discretion of each type implementation. For
- /// primitive integers, this is implemented by the inherent `from_str_radix` methods in the
- /// standard library, which **panic** if the radix is not in the range from 2 to 36. The
- /// implementation in this crate for primitive floats is similar.
- ///
- /// For third-party types, it is suggested that implementations should follow suit and at least
- /// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix.
- /// It's possible that a type might not even support the common radix 10, nor any, if string
- /// parsing doesn't make sense for that type.
- fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
-}
-
-/// Generic trait for types implementing basic numeric operations
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumOps<Rhs = Self, Output = Self>:
- Add<Rhs, Output = Output>
- + Sub<Rhs, Output = Output>
- + Mul<Rhs, Output = Output>
- + Div<Rhs, Output = Output>
- + Rem<Rhs, Output = Output>
-{
-}
-
-impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
- T: Add<Rhs, Output = Output>
- + Sub<Rhs, Output = Output>
- + Mul<Rhs, Output = Output>
- + Div<Rhs, Output = Output>
- + Rem<Rhs, Output = Output>
-{
-}
-
-/// The trait for `Num` types which also implement numeric operations taking
-/// the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
-impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
-
-/// The trait for `Num` references which implement numeric operations, taking the
-/// second operand either by value or by reference.
-///
-/// This is automatically implemented for all types which implement the operators. It covers
-/// every type implementing the operations though, regardless of it being a reference or
-/// related to `Num`.
-pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
-
-/// Generic trait for types implementing numeric assignment operators (like `+=`).
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignOps<Rhs = Self>:
- AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
-{
-}
-
-impl<T, Rhs> NumAssignOps<Rhs> for T where
- T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
-{
-}
-
-/// The trait for `Num` types which also implement assignment operators.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssign: Num + NumAssignOps {}
-impl<T> NumAssign for T where T: Num + NumAssignOps {}
-
-/// The trait for `NumAssign` types which also implement assignment operations
-/// taking the second operand by reference.
-///
-/// This is automatically implemented for types which implement the operators.
-pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
-impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
-
-macro_rules! int_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ::core::num::ParseIntError;
- #[inline]
- fn from_str_radix(s: &str, radix: u32)
- -> Result<Self, ::core::num::ParseIntError>
- {
- <$t>::from_str_radix(s, radix)
- }
- }
- )*)
-}
-int_trait_impl!(Num for usize u8 u16 u32 u64 u128);
-int_trait_impl!(Num for isize i8 i16 i32 i64 i128);
-
-impl<T: Num> Num for Wrapping<T>
-where
- Wrapping<T>: NumOps,
-{
- type FromStrRadixErr = T::FromStrRadixErr;
- fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
- T::from_str_radix(str, radix).map(Wrapping)
- }
-}
-
-#[derive(Debug)]
-pub enum FloatErrorKind {
- Empty,
- Invalid,
-}
-// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
-// so there's not really any way for us to reuse it.
-#[derive(Debug)]
-pub struct ParseFloatError {
- pub kind: FloatErrorKind,
-}
-
-impl fmt::Display for ParseFloatError {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- let description = match self.kind {
- FloatErrorKind::Empty => "cannot parse float from empty string",
- FloatErrorKind::Invalid => "invalid float literal",
- };
-
- description.fmt(f)
- }
-}
-
-fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool {
- a.len() == b.len()
- && a.bytes().zip(b.bytes()).all(|(a, b)| {
- let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5);
- a_to_ascii_lower == b
- })
-}
-
-// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
-// with this implementation ourselves until we want to make a breaking change.
-// (would have to drop it from `Num` though)
-macro_rules! float_trait_impl {
- ($name:ident for $($t:ident)*) => ($(
- impl $name for $t {
- type FromStrRadixErr = ParseFloatError;
-
- fn from_str_radix(src: &str, radix: u32)
- -> Result<Self, Self::FromStrRadixErr>
- {
- use self::FloatErrorKind::*;
- use self::ParseFloatError as PFE;
-
- // Special case radix 10 to use more accurate standard library implementation
- if radix == 10 {
- return src.parse().map_err(|_| PFE {
- kind: if src.is_empty() { Empty } else { Invalid },
- });
- }
-
- // Special values
- if str_to_ascii_lower_eq_str(src, "inf")
- || str_to_ascii_lower_eq_str(src, "infinity")
- {
- return Ok(core::$t::INFINITY);
- } else if str_to_ascii_lower_eq_str(src, "-inf")
- || str_to_ascii_lower_eq_str(src, "-infinity")
- {
- return Ok(core::$t::NEG_INFINITY);
- } else if str_to_ascii_lower_eq_str(src, "nan") {
- return Ok(core::$t::NAN);
- } else if str_to_ascii_lower_eq_str(src, "-nan") {
- return Ok(-core::$t::NAN);
- }
-
- fn slice_shift_char(src: &str) -> Option<(char, &str)> {
- let mut chars = src.chars();
- Some((chars.next()?, chars.as_str()))
- }
-
- let (is_positive, src) = match slice_shift_char(src) {
- None => return Err(PFE { kind: Empty }),
- Some(('-', "")) => return Err(PFE { kind: Empty }),
- Some(('-', src)) => (false, src),
- Some((_, _)) => (true, src),
- };
-
- // The significand to accumulate
- let mut sig = if is_positive { 0.0 } else { -0.0 };
- // Necessary to detect overflow
- let mut prev_sig = sig;
- let mut cs = src.chars().enumerate();
- // Exponent prefix and exponent index offset
- let mut exp_info = None::<(char, usize)>;
-
- // Parse the integer part of the significand
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // shift significand one digit left
- sig *= radix as $t;
-
- // add/subtract current digit depending on sign
- if is_positive {
- sig += (digit as isize) as $t;
- } else {
- sig -= (digit as isize) as $t;
- }
-
- // Detect overflow by comparing to last value, except
- // if we've not seen any non-zero digits.
- if prev_sig != 0.0 {
- if is_positive && sig <= prev_sig
- { return Ok(core::$t::INFINITY); }
- if !is_positive && sig >= prev_sig
- { return Ok(core::$t::NEG_INFINITY); }
-
- // Detect overflow by reversing the shift-and-add process
- if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
- { return Ok(core::$t::INFINITY); }
- if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
- { return Ok(core::$t::NEG_INFINITY); }
- }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- '.' => {
- break; // start of fractional part
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
-
- // If we are not yet at the exponent parse the fractional
- // part of the significand
- if exp_info.is_none() {
- let mut power = 1.0;
- for (i, c) in cs.by_ref() {
- match c.to_digit(radix) {
- Some(digit) => {
- // Decrease power one order of magnitude
- power /= radix as $t;
- // add/subtract current digit depending on sign
- sig = if is_positive {
- sig + (digit as $t) * power
- } else {
- sig - (digit as $t) * power
- };
- // Detect overflow by comparing to last value
- if is_positive && sig < prev_sig
- { return Ok(core::$t::INFINITY); }
- if !is_positive && sig > prev_sig
- { return Ok(core::$t::NEG_INFINITY); }
- prev_sig = sig;
- },
- None => match c {
- 'e' | 'E' | 'p' | 'P' => {
- exp_info = Some((c, i + 1));
- break; // start of exponent
- },
- _ => {
- return Err(PFE { kind: Invalid });
- },
- },
- }
- }
- }
-
- // Parse and calculate the exponent
- let exp = match exp_info {
- Some((c, offset)) => {
- let base = match c {
- 'E' | 'e' if radix == 10 => 10.0,
- 'P' | 'p' if radix == 16 => 2.0,
- _ => return Err(PFE { kind: Invalid }),
- };
-
- // Parse the exponent as decimal integer
- let src = &src[offset..];
- let (is_positive, exp) = match slice_shift_char(src) {
- Some(('-', src)) => (false, src.parse::<usize>()),
- Some(('+', src)) => (true, src.parse::<usize>()),
- Some((_, _)) => (true, src.parse::<usize>()),
- None => return Err(PFE { kind: Invalid }),
- };
-
- #[cfg(feature = "std")]
- fn pow(base: $t, exp: usize) -> $t {
- Float::powi(base, exp as i32)
- }
- // otherwise uses the generic `pow` from the root
-
- match (is_positive, exp) {
- (true, Ok(exp)) => pow(base, exp),
- (false, Ok(exp)) => 1.0 / pow(base, exp),
- (_, Err(_)) => return Err(PFE { kind: Invalid }),
- }
- },
- None => 1.0, // no exponent
- };
-
- Ok(sig * exp)
- }
- }
- )*)
-}
-float_trait_impl!(Num for f32 f64);
-
-/// A value bounded by a minimum and a maximum
-///
-/// If input is less than min then this returns min.
-/// If input is greater than max then this returns max.
-/// Otherwise this returns input.
-///
-/// **Panics** in debug mode if `!(min <= max)`.
-#[inline]
-pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
- debug_assert!(min <= max, "min must be less than or equal to max");
- if input < min {
- min
- } else if input > max {
- max
- } else {
- input
- }
-}
-
-/// A value bounded by a minimum value
-///
-/// If input is less than min then this returns min.
-/// Otherwise this returns input.
-/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
-///
-/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
-#[inline]
-#[allow(clippy::eq_op)]
-pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
- debug_assert!(min == min, "min must not be NAN");
- if input < min {
- min
- } else {
- input
- }
-}
-
-/// A value bounded by a maximum value
-///
-/// If input is greater than max then this returns max.
-/// Otherwise this returns input.
-/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
-///
-/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
-#[inline]
-#[allow(clippy::eq_op)]
-pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
- debug_assert!(max == max, "max must not be NAN");
- if input > max {
- max
- } else {
- input
- }
-}
-
-#[test]
-fn clamp_test() {
- // Int test
- assert_eq!(1, clamp(1, -1, 2));
- assert_eq!(-1, clamp(-2, -1, 2));
- assert_eq!(2, clamp(3, -1, 2));
- assert_eq!(1, clamp_min(1, -1));
- assert_eq!(-1, clamp_min(-2, -1));
- assert_eq!(-1, clamp_max(1, -1));
- assert_eq!(-2, clamp_max(-2, -1));
-
- // Float test
- assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
- assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
- assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
- assert_eq!(1.0, clamp_min(1.0, -1.0));
- assert_eq!(-1.0, clamp_min(-2.0, -1.0));
- assert_eq!(-1.0, clamp_max(1.0, -1.0));
- assert_eq!(-2.0, clamp_max(-2.0, -1.0));
- assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
- assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
- assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_min() {
- clamp(0., ::core::f32::NAN, 1.);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_max() {
- clamp(0., -1., ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_nan_min_max() {
- clamp(0., ::core::f32::NAN, ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_min_nan_min() {
- clamp_min(0., ::core::f32::NAN);
-}
-
-#[test]
-#[should_panic]
-#[cfg(debug_assertions)]
-fn clamp_max_nan_max() {
- clamp_max(0., ::core::f32::NAN);
-}
-
-#[test]
-fn from_str_radix_unwrap() {
- // The Result error must impl Debug to allow unwrap()
-
- let i: i32 = Num::from_str_radix("0", 10).unwrap();
- assert_eq!(i, 0);
-
- let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
- assert_eq!(f, 0.0);
-}
-
-#[test]
-fn from_str_radix_multi_byte_fail() {
- // Ensure parsing doesn't panic, even on invalid sign characters
- assert!(f32::from_str_radix("™0.2", 10).is_err());
-
- // Even when parsing the exponent sign
- assert!(f32::from_str_radix("0.2E™1", 10).is_err());
-}
-
-#[test]
-fn from_str_radix_ignore_case() {
- assert_eq!(
- f32::from_str_radix("InF", 16).unwrap(),
- ::core::f32::INFINITY
- );
- assert_eq!(
- f32::from_str_radix("InfinitY", 16).unwrap(),
- ::core::f32::INFINITY
- );
- assert_eq!(
- f32::from_str_radix("-InF", 8).unwrap(),
- ::core::f32::NEG_INFINITY
- );
- assert_eq!(
- f32::from_str_radix("-InfinitY", 8).unwrap(),
- ::core::f32::NEG_INFINITY
- );
- assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan());
- assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan());
-}
-
-#[test]
-fn wrapping_is_num() {
- fn require_num<T: Num>(_: &T) {}
- require_num(&Wrapping(42_u32));
- require_num(&Wrapping(-42));
-}
-
-#[test]
-fn wrapping_from_str_radix() {
- macro_rules! test_wrapping_from_str_radix {
- ($($t:ty)+) => {
- $(
- for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
- let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
- assert_eq!(w, <$t as Num>::from_str_radix(s, r));
- }
- )+
- };
- }
-
- test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
-}
-
-#[test]
-fn check_num_ops() {
- fn compute<T: Num + Copy>(x: T, y: T) -> T {
- x * y / y % y + y - y
- }
- assert_eq!(compute(1, 2), 1)
-}
-
-#[test]
-fn check_numref_ops() {
- fn compute<T: NumRef>(x: T, y: &T) -> T {
- x * y / y % y + y - y
- }
- assert_eq!(compute(1, &2), 1)
-}
-
-#[test]
-fn check_refnum_ops() {
- fn compute<T: Copy>(x: &T, y: T) -> T
- where
- for<'a> &'a T: RefNum<T>,
- {
- &(&(&(&(x * y) / y) % y) + y) - y
- }
- assert_eq!(compute(&1, 2), 1)
-}
-
-#[test]
-fn check_refref_ops() {
- fn compute<T>(x: &T, y: &T) -> T
- where
- for<'a> &'a T: RefNum<T>,
- {
- &(&(&(&(x * y) / y) % y) + y) - y
- }
- assert_eq!(compute(&1, &2), 1)
-}
-
-#[test]
-fn check_numassign_ops() {
- fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
- x *= y;
- x /= y;
- x %= y;
- x += y;
- x -= y;
- x
- }
- assert_eq!(compute(1, 2), 1)
-}
-
-#[test]
-fn check_numassignref_ops() {
- fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T {
- x *= y;
- x /= y;
- x %= y;
- x += y;
- x -= y;
- x
- }
- assert_eq!(compute(1, &2), 1)
-}
diff --git a/vendor/num-traits/src/macros.rs b/vendor/num-traits/src/macros.rs
deleted file mode 100644
index b97758e..0000000
--- a/vendor/num-traits/src/macros.rs
+++ /dev/null
@@ -1,44 +0,0 @@
-// not all are used in all features configurations
-#![allow(unused)]
-
-/// Forward a method to an inherent method or a base trait method.
-macro_rules! forward {
- ($( Self :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
- => {$(
- #[inline]
- fn $method(self $( , $arg : $ty )* ) -> $ret {
- Self::$method(self $( , $arg )* )
- }
- )*};
- ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
- => {$(
- #[inline]
- fn $method(self $( , $arg : $ty )* ) -> $ret {
- <Self as $base>::$method(self $( , $arg )* )
- }
- )*};
- ($( $base:ident :: $method:ident ( $( $arg:ident : $ty:ty ),* ) -> $ret:ty ; )*)
- => {$(
- #[inline]
- fn $method( $( $arg : $ty ),* ) -> $ret {
- <Self as $base>::$method( $( $arg ),* )
- }
- )*};
- ($( $imp:path as $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
- => {$(
- #[inline]
- fn $method(self $( , $arg : $ty )* ) -> $ret {
- $imp(self $( , $arg )* )
- }
- )*};
-}
-
-macro_rules! constant {
- ($( $method:ident () -> $ret:expr ; )*)
- => {$(
- #[inline]
- fn $method() -> Self {
- $ret
- }
- )*};
-}
diff --git a/vendor/num-traits/src/ops/bytes.rs b/vendor/num-traits/src/ops/bytes.rs
deleted file mode 100644
index 4df9ecd..0000000
--- a/vendor/num-traits/src/ops/bytes.rs
+++ /dev/null
@@ -1,403 +0,0 @@
-use core::borrow::{Borrow, BorrowMut};
-use core::cmp::{Eq, Ord, PartialEq, PartialOrd};
-use core::fmt::Debug;
-use core::hash::Hash;
-#[cfg(not(has_int_to_from_bytes))]
-use core::mem::transmute;
-
-pub trait NumBytes:
- Debug
- + AsRef<[u8]>
- + AsMut<[u8]>
- + PartialEq
- + Eq
- + PartialOrd
- + Ord
- + Hash
- + Borrow<[u8]>
- + BorrowMut<[u8]>
-{
-}
-
-impl<T> NumBytes for T where
- T: Debug
- + AsRef<[u8]>
- + AsMut<[u8]>
- + PartialEq
- + Eq
- + PartialOrd
- + Ord
- + Hash
- + Borrow<[u8]>
- + BorrowMut<[u8]>
- + ?Sized
-{
-}
-
-pub trait ToBytes {
- type Bytes: NumBytes;
-
- /// Return the memory representation of this number as a byte array in big-endian byte order.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::ToBytes;
- ///
- /// let bytes = ToBytes::to_be_bytes(&0x12345678u32);
- /// assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);
- /// ```
- fn to_be_bytes(&self) -> Self::Bytes;
-
- /// Return the memory representation of this number as a byte array in little-endian byte order.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::ToBytes;
- ///
- /// let bytes = ToBytes::to_le_bytes(&0x12345678u32);
- /// assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);
- /// ```
- fn to_le_bytes(&self) -> Self::Bytes;
-
- /// Return the memory representation of this number as a byte array in native byte order.
- ///
- /// As the target platform's native endianness is used,
- /// portable code should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
- ///
- /// [`to_be_bytes`]: #method.to_be_bytes
- /// [`to_le_bytes`]: #method.to_le_bytes
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::ToBytes;
- ///
- /// #[cfg(target_endian = "big")]
- /// let expected = [0x12, 0x34, 0x56, 0x78];
- ///
- /// #[cfg(target_endian = "little")]
- /// let expected = [0x78, 0x56, 0x34, 0x12];
- ///
- /// let bytes = ToBytes::to_ne_bytes(&0x12345678u32);
- /// assert_eq!(bytes, expected)
- /// ```
- fn to_ne_bytes(&self) -> Self::Bytes {
- #[cfg(target_endian = "big")]
- let bytes = self.to_be_bytes();
- #[cfg(target_endian = "little")]
- let bytes = self.to_le_bytes();
- bytes
- }
-}
-
-pub trait FromBytes: Sized {
- type Bytes: NumBytes + ?Sized;
-
- /// Create a number from its representation as a byte array in big endian.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::FromBytes;
- ///
- /// let value: u32 = FromBytes::from_be_bytes(&[0x12, 0x34, 0x56, 0x78]);
- /// assert_eq!(value, 0x12345678);
- /// ```
- fn from_be_bytes(bytes: &Self::Bytes) -> Self;
-
- /// Create a number from its representation as a byte array in little endian.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::FromBytes;
- ///
- /// let value: u32 = FromBytes::from_le_bytes(&[0x78, 0x56, 0x34, 0x12]);
- /// assert_eq!(value, 0x12345678);
- /// ```
- fn from_le_bytes(bytes: &Self::Bytes) -> Self;
-
- /// Create a number from its memory representation as a byte array in native endianness.
- ///
- /// As the target platform's native endianness is used,
- /// portable code likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as appropriate instead.
- ///
- /// [`from_be_bytes`]: #method.from_be_bytes
- /// [`from_le_bytes`]: #method.from_le_bytes
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::FromBytes;
- ///
- /// #[cfg(target_endian = "big")]
- /// let bytes = [0x12, 0x34, 0x56, 0x78];
- ///
- /// #[cfg(target_endian = "little")]
- /// let bytes = [0x78, 0x56, 0x34, 0x12];
- ///
- /// let value: u32 = FromBytes::from_ne_bytes(&bytes);
- /// assert_eq!(value, 0x12345678)
- /// ```
- fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
- #[cfg(target_endian = "big")]
- let this = Self::from_be_bytes(bytes);
- #[cfg(target_endian = "little")]
- let this = Self::from_le_bytes(bytes);
- this
- }
-}
-
-macro_rules! float_to_from_bytes_impl {
- ($T:ty, $L:expr) => {
- #[cfg(has_float_to_from_bytes)]
- impl ToBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn to_be_bytes(&self) -> Self::Bytes {
- <$T>::to_be_bytes(*self)
- }
-
- #[inline]
- fn to_le_bytes(&self) -> Self::Bytes {
- <$T>::to_le_bytes(*self)
- }
-
- #[inline]
- fn to_ne_bytes(&self) -> Self::Bytes {
- <$T>::to_ne_bytes(*self)
- }
- }
-
- #[cfg(has_float_to_from_bytes)]
- impl FromBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn from_be_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_be_bytes(*bytes)
- }
-
- #[inline]
- fn from_le_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_le_bytes(*bytes)
- }
-
- #[inline]
- fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_ne_bytes(*bytes)
- }
- }
-
- #[cfg(not(has_float_to_from_bytes))]
- impl ToBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn to_be_bytes(&self) -> Self::Bytes {
- ToBytes::to_be_bytes(&self.to_bits())
- }
-
- #[inline]
- fn to_le_bytes(&self) -> Self::Bytes {
- ToBytes::to_le_bytes(&self.to_bits())
- }
-
- #[inline]
- fn to_ne_bytes(&self) -> Self::Bytes {
- ToBytes::to_ne_bytes(&self.to_bits())
- }
- }
-
- #[cfg(not(has_float_to_from_bytes))]
- impl FromBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn from_be_bytes(bytes: &Self::Bytes) -> Self {
- Self::from_bits(FromBytes::from_be_bytes(bytes))
- }
-
- #[inline]
- fn from_le_bytes(bytes: &Self::Bytes) -> Self {
- Self::from_bits(FromBytes::from_le_bytes(bytes))
- }
-
- #[inline]
- fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
- Self::from_bits(FromBytes::from_ne_bytes(bytes))
- }
- }
- };
-}
-
-macro_rules! int_to_from_bytes_impl {
- ($T:ty, $L:expr) => {
- #[cfg(has_int_to_from_bytes)]
- impl ToBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn to_be_bytes(&self) -> Self::Bytes {
- <$T>::to_be_bytes(*self)
- }
-
- #[inline]
- fn to_le_bytes(&self) -> Self::Bytes {
- <$T>::to_le_bytes(*self)
- }
-
- #[inline]
- fn to_ne_bytes(&self) -> Self::Bytes {
- <$T>::to_ne_bytes(*self)
- }
- }
-
- #[cfg(has_int_to_from_bytes)]
- impl FromBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn from_be_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_be_bytes(*bytes)
- }
-
- #[inline]
- fn from_le_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_le_bytes(*bytes)
- }
-
- #[inline]
- fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
- <$T>::from_ne_bytes(*bytes)
- }
- }
-
- #[cfg(not(has_int_to_from_bytes))]
- impl ToBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn to_be_bytes(&self) -> Self::Bytes {
- <$T as ToBytes>::to_ne_bytes(&<$T>::to_be(*self))
- }
-
- #[inline]
- fn to_le_bytes(&self) -> Self::Bytes {
- <$T as ToBytes>::to_ne_bytes(&<$T>::to_le(*self))
- }
-
- #[inline]
- fn to_ne_bytes(&self) -> Self::Bytes {
- unsafe { transmute(*self) }
- }
- }
-
- #[cfg(not(has_int_to_from_bytes))]
- impl FromBytes for $T {
- type Bytes = [u8; $L];
-
- #[inline]
- fn from_be_bytes(bytes: &Self::Bytes) -> Self {
- Self::from_be(<Self as FromBytes>::from_ne_bytes(bytes))
- }
-
- #[inline]
- fn from_le_bytes(bytes: &Self::Bytes) -> Self {
- Self::from_le(<Self as FromBytes>::from_ne_bytes(bytes))
- }
-
- #[inline]
- fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
- unsafe { transmute(*bytes) }
- }
- }
- };
-}
-
-int_to_from_bytes_impl!(u8, 1);
-int_to_from_bytes_impl!(u16, 2);
-int_to_from_bytes_impl!(u32, 4);
-int_to_from_bytes_impl!(u64, 8);
-int_to_from_bytes_impl!(u128, 16);
-#[cfg(target_pointer_width = "64")]
-int_to_from_bytes_impl!(usize, 8);
-#[cfg(target_pointer_width = "32")]
-int_to_from_bytes_impl!(usize, 4);
-
-int_to_from_bytes_impl!(i8, 1);
-int_to_from_bytes_impl!(i16, 2);
-int_to_from_bytes_impl!(i32, 4);
-int_to_from_bytes_impl!(i64, 8);
-int_to_from_bytes_impl!(i128, 16);
-#[cfg(target_pointer_width = "64")]
-int_to_from_bytes_impl!(isize, 8);
-#[cfg(target_pointer_width = "32")]
-int_to_from_bytes_impl!(isize, 4);
-
-float_to_from_bytes_impl!(f32, 4);
-float_to_from_bytes_impl!(f64, 8);
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- macro_rules! check_to_from_bytes {
- ($( $ty:ty )+) => {$({
- let n = 1;
- let be = <$ty as ToBytes>::to_be_bytes(&n);
- let le = <$ty as ToBytes>::to_le_bytes(&n);
- let ne = <$ty as ToBytes>::to_ne_bytes(&n);
-
- assert_eq!(*be.last().unwrap(), 1);
- assert_eq!(*le.first().unwrap(), 1);
- if cfg!(target_endian = "big") {
- assert_eq!(*ne.last().unwrap(), 1);
- } else {
- assert_eq!(*ne.first().unwrap(), 1);
- }
-
- assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n);
- assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n);
- if cfg!(target_endian = "big") {
- assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n);
- } else {
- assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n);
- }
- })+}
- }
-
- #[test]
- fn convert_between_int_and_bytes() {
- check_to_from_bytes!(u8 u16 u32 u64 u128 usize);
- check_to_from_bytes!(i8 i16 i32 i64 i128 isize);
- }
-
- #[test]
- fn convert_between_float_and_bytes() {
- macro_rules! check_to_from_bytes {
- ($( $ty:ty )+) => {$(
- let n: $ty = 3.14;
-
- let be = <$ty as ToBytes>::to_be_bytes(&n);
- let le = <$ty as ToBytes>::to_le_bytes(&n);
- let ne = <$ty as ToBytes>::to_ne_bytes(&n);
-
- assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n);
- assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n);
- if cfg!(target_endian = "big") {
- assert_eq!(ne, be);
- assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n);
- } else {
- assert_eq!(ne, le);
- assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n);
- }
- )+}
- }
-
- check_to_from_bytes!(f32 f64);
- }
-}
diff --git a/vendor/num-traits/src/ops/checked.rs b/vendor/num-traits/src/ops/checked.rs
deleted file mode 100644
index da1eb3e..0000000
--- a/vendor/num-traits/src/ops/checked.rs
+++ /dev/null
@@ -1,261 +0,0 @@
-use core::ops::{Add, Div, Mul, Rem, Shl, Shr, Sub};
-
-/// Performs addition that returns `None` instead of wrapping around on
-/// overflow.
-pub trait CheckedAdd: Sized + Add<Self, Output = Self> {
- /// Adds two numbers, checking for overflow. If overflow happens, `None` is
- /// returned.
- fn checked_add(&self, v: &Self) -> Option<Self>;
-}
-
-macro_rules! checked_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, v: &$t) -> Option<$t> {
- <$t>::$method(*self, *v)
- }
- }
- };
-}
-
-checked_impl!(CheckedAdd, checked_add, u8);
-checked_impl!(CheckedAdd, checked_add, u16);
-checked_impl!(CheckedAdd, checked_add, u32);
-checked_impl!(CheckedAdd, checked_add, u64);
-checked_impl!(CheckedAdd, checked_add, usize);
-checked_impl!(CheckedAdd, checked_add, u128);
-
-checked_impl!(CheckedAdd, checked_add, i8);
-checked_impl!(CheckedAdd, checked_add, i16);
-checked_impl!(CheckedAdd, checked_add, i32);
-checked_impl!(CheckedAdd, checked_add, i64);
-checked_impl!(CheckedAdd, checked_add, isize);
-checked_impl!(CheckedAdd, checked_add, i128);
-
-/// Performs subtraction that returns `None` instead of wrapping around on underflow.
-pub trait CheckedSub: Sized + Sub<Self, Output = Self> {
- /// Subtracts two numbers, checking for underflow. If underflow happens,
- /// `None` is returned.
- fn checked_sub(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedSub, checked_sub, u8);
-checked_impl!(CheckedSub, checked_sub, u16);
-checked_impl!(CheckedSub, checked_sub, u32);
-checked_impl!(CheckedSub, checked_sub, u64);
-checked_impl!(CheckedSub, checked_sub, usize);
-checked_impl!(CheckedSub, checked_sub, u128);
-
-checked_impl!(CheckedSub, checked_sub, i8);
-checked_impl!(CheckedSub, checked_sub, i16);
-checked_impl!(CheckedSub, checked_sub, i32);
-checked_impl!(CheckedSub, checked_sub, i64);
-checked_impl!(CheckedSub, checked_sub, isize);
-checked_impl!(CheckedSub, checked_sub, i128);
-
-/// Performs multiplication that returns `None` instead of wrapping around on underflow or
-/// overflow.
-pub trait CheckedMul: Sized + Mul<Self, Output = Self> {
- /// Multiplies two numbers, checking for underflow or overflow. If underflow
- /// or overflow happens, `None` is returned.
- fn checked_mul(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedMul, checked_mul, u8);
-checked_impl!(CheckedMul, checked_mul, u16);
-checked_impl!(CheckedMul, checked_mul, u32);
-checked_impl!(CheckedMul, checked_mul, u64);
-checked_impl!(CheckedMul, checked_mul, usize);
-checked_impl!(CheckedMul, checked_mul, u128);
-
-checked_impl!(CheckedMul, checked_mul, i8);
-checked_impl!(CheckedMul, checked_mul, i16);
-checked_impl!(CheckedMul, checked_mul, i32);
-checked_impl!(CheckedMul, checked_mul, i64);
-checked_impl!(CheckedMul, checked_mul, isize);
-checked_impl!(CheckedMul, checked_mul, i128);
-
-/// Performs division that returns `None` instead of panicking on division by zero and instead of
-/// wrapping around on underflow and overflow.
-pub trait CheckedDiv: Sized + Div<Self, Output = Self> {
- /// Divides two numbers, checking for underflow, overflow and division by
- /// zero. If any of that happens, `None` is returned.
- fn checked_div(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedDiv, checked_div, u8);
-checked_impl!(CheckedDiv, checked_div, u16);
-checked_impl!(CheckedDiv, checked_div, u32);
-checked_impl!(CheckedDiv, checked_div, u64);
-checked_impl!(CheckedDiv, checked_div, usize);
-checked_impl!(CheckedDiv, checked_div, u128);
-
-checked_impl!(CheckedDiv, checked_div, i8);
-checked_impl!(CheckedDiv, checked_div, i16);
-checked_impl!(CheckedDiv, checked_div, i32);
-checked_impl!(CheckedDiv, checked_div, i64);
-checked_impl!(CheckedDiv, checked_div, isize);
-checked_impl!(CheckedDiv, checked_div, i128);
-
-/// Performs an integral remainder that returns `None` instead of panicking on division by zero and
-/// instead of wrapping around on underflow and overflow.
-pub trait CheckedRem: Sized + Rem<Self, Output = Self> {
- /// Finds the remainder of dividing two numbers, checking for underflow, overflow and division
- /// by zero. If any of that happens, `None` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::CheckedRem;
- /// use std::i32::MIN;
- ///
- /// assert_eq!(CheckedRem::checked_rem(&10, &7), Some(3));
- /// assert_eq!(CheckedRem::checked_rem(&10, &-7), Some(3));
- /// assert_eq!(CheckedRem::checked_rem(&-10, &7), Some(-3));
- /// assert_eq!(CheckedRem::checked_rem(&-10, &-7), Some(-3));
- ///
- /// assert_eq!(CheckedRem::checked_rem(&10, &0), None);
- ///
- /// assert_eq!(CheckedRem::checked_rem(&MIN, &1), Some(0));
- /// assert_eq!(CheckedRem::checked_rem(&MIN, &-1), None);
- /// ```
- fn checked_rem(&self, v: &Self) -> Option<Self>;
-}
-
-checked_impl!(CheckedRem, checked_rem, u8);
-checked_impl!(CheckedRem, checked_rem, u16);
-checked_impl!(CheckedRem, checked_rem, u32);
-checked_impl!(CheckedRem, checked_rem, u64);
-checked_impl!(CheckedRem, checked_rem, usize);
-checked_impl!(CheckedRem, checked_rem, u128);
-
-checked_impl!(CheckedRem, checked_rem, i8);
-checked_impl!(CheckedRem, checked_rem, i16);
-checked_impl!(CheckedRem, checked_rem, i32);
-checked_impl!(CheckedRem, checked_rem, i64);
-checked_impl!(CheckedRem, checked_rem, isize);
-checked_impl!(CheckedRem, checked_rem, i128);
-
-macro_rules! checked_impl_unary {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self) -> Option<$t> {
- <$t>::$method(*self)
- }
- }
- };
-}
-
-/// Performs negation that returns `None` if the result can't be represented.
-pub trait CheckedNeg: Sized {
- /// Negates a number, returning `None` for results that can't be represented, like signed `MIN`
- /// values that can't be positive, or non-zero unsigned values that can't be negative.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::CheckedNeg;
- /// use std::i32::MIN;
- ///
- /// assert_eq!(CheckedNeg::checked_neg(&1_i32), Some(-1));
- /// assert_eq!(CheckedNeg::checked_neg(&-1_i32), Some(1));
- /// assert_eq!(CheckedNeg::checked_neg(&MIN), None);
- ///
- /// assert_eq!(CheckedNeg::checked_neg(&0_u32), Some(0));
- /// assert_eq!(CheckedNeg::checked_neg(&1_u32), None);
- /// ```
- fn checked_neg(&self) -> Option<Self>;
-}
-
-checked_impl_unary!(CheckedNeg, checked_neg, u8);
-checked_impl_unary!(CheckedNeg, checked_neg, u16);
-checked_impl_unary!(CheckedNeg, checked_neg, u32);
-checked_impl_unary!(CheckedNeg, checked_neg, u64);
-checked_impl_unary!(CheckedNeg, checked_neg, usize);
-checked_impl_unary!(CheckedNeg, checked_neg, u128);
-
-checked_impl_unary!(CheckedNeg, checked_neg, i8);
-checked_impl_unary!(CheckedNeg, checked_neg, i16);
-checked_impl_unary!(CheckedNeg, checked_neg, i32);
-checked_impl_unary!(CheckedNeg, checked_neg, i64);
-checked_impl_unary!(CheckedNeg, checked_neg, isize);
-checked_impl_unary!(CheckedNeg, checked_neg, i128);
-
-/// Performs a left shift that returns `None` on shifts larger than
-/// or equal to the type width.
-pub trait CheckedShl: Sized + Shl<u32, Output = Self> {
- /// Checked shift left. Computes `self << rhs`, returning `None`
- /// if `rhs` is larger than or equal to the number of bits in `self`.
- ///
- /// ```
- /// use num_traits::CheckedShl;
- ///
- /// let x: u16 = 0x0001;
- ///
- /// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001));
- /// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002));
- /// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
- /// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
- /// ```
- fn checked_shl(&self, rhs: u32) -> Option<Self>;
-}
-
-macro_rules! checked_shift_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, rhs: u32) -> Option<$t> {
- <$t>::$method(*self, rhs)
- }
- }
- };
-}
-
-checked_shift_impl!(CheckedShl, checked_shl, u8);
-checked_shift_impl!(CheckedShl, checked_shl, u16);
-checked_shift_impl!(CheckedShl, checked_shl, u32);
-checked_shift_impl!(CheckedShl, checked_shl, u64);
-checked_shift_impl!(CheckedShl, checked_shl, usize);
-checked_shift_impl!(CheckedShl, checked_shl, u128);
-
-checked_shift_impl!(CheckedShl, checked_shl, i8);
-checked_shift_impl!(CheckedShl, checked_shl, i16);
-checked_shift_impl!(CheckedShl, checked_shl, i32);
-checked_shift_impl!(CheckedShl, checked_shl, i64);
-checked_shift_impl!(CheckedShl, checked_shl, isize);
-checked_shift_impl!(CheckedShl, checked_shl, i128);
-
-/// Performs a right shift that returns `None` on shifts larger than
-/// or equal to the type width.
-pub trait CheckedShr: Sized + Shr<u32, Output = Self> {
- /// Checked shift right. Computes `self >> rhs`, returning `None`
- /// if `rhs` is larger than or equal to the number of bits in `self`.
- ///
- /// ```
- /// use num_traits::CheckedShr;
- ///
- /// let x: u16 = 0x8000;
- ///
- /// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000));
- /// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000));
- /// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
- /// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
- /// ```
- fn checked_shr(&self, rhs: u32) -> Option<Self>;
-}
-
-checked_shift_impl!(CheckedShr, checked_shr, u8);
-checked_shift_impl!(CheckedShr, checked_shr, u16);
-checked_shift_impl!(CheckedShr, checked_shr, u32);
-checked_shift_impl!(CheckedShr, checked_shr, u64);
-checked_shift_impl!(CheckedShr, checked_shr, usize);
-checked_shift_impl!(CheckedShr, checked_shr, u128);
-
-checked_shift_impl!(CheckedShr, checked_shr, i8);
-checked_shift_impl!(CheckedShr, checked_shr, i16);
-checked_shift_impl!(CheckedShr, checked_shr, i32);
-checked_shift_impl!(CheckedShr, checked_shr, i64);
-checked_shift_impl!(CheckedShr, checked_shr, isize);
-checked_shift_impl!(CheckedShr, checked_shr, i128);
diff --git a/vendor/num-traits/src/ops/euclid.rs b/vendor/num-traits/src/ops/euclid.rs
deleted file mode 100644
index 4547fee..0000000
--- a/vendor/num-traits/src/ops/euclid.rs
+++ /dev/null
@@ -1,339 +0,0 @@
-use core::ops::{Div, Rem};
-
-pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
- /// Calculates Euclidean division, the matching method for `rem_euclid`.
- ///
- /// This computes the integer `n` such that
- /// `self = n * v + self.rem_euclid(v)`.
- /// In other words, the result is `self / v` rounded to the integer `n`
- /// such that `self >= n * v`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::Euclid;
- ///
- /// let a: i32 = 7;
- /// let b: i32 = 4;
- /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1
- /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2
- /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1
- /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2
- /// ```
- fn div_euclid(&self, v: &Self) -> Self;
-
- /// Calculates the least nonnegative remainder of `self (mod v)`.
- ///
- /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in
- /// most cases. However, due to a floating point round-off error it can
- /// result in `r == v.abs()`, violating the mathematical definition, if
- /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`.
- /// This result is not an element of the function's codomain, but it is the
- /// closest floating point number in the real numbers and thus fulfills the
- /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)`
- /// approximatively.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::Euclid;
- ///
- /// let a: i32 = 7;
- /// let b: i32 = 4;
- /// assert_eq!(Euclid::rem_euclid(&a, &b), 3);
- /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1);
- /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3);
- /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1);
- /// ```
- fn rem_euclid(&self, v: &Self) -> Self;
-}
-
-macro_rules! euclid_forward_impl {
- ($($t:ty)*) => {$(
- #[cfg(has_div_euclid)]
- impl Euclid for $t {
- #[inline]
- fn div_euclid(&self, v: &$t) -> Self {
- <$t>::div_euclid(*self, *v)
- }
-
- #[inline]
- fn rem_euclid(&self, v: &$t) -> Self {
- <$t>::rem_euclid(*self, *v)
- }
- }
- )*}
-}
-
-macro_rules! euclid_int_impl {
- ($($t:ty)*) => {$(
- euclid_forward_impl!($t);
-
- #[cfg(not(has_div_euclid))]
- impl Euclid for $t {
- #[inline]
- fn div_euclid(&self, v: &$t) -> Self {
- let q = self / v;
- if self % v < 0 {
- return if *v > 0 { q - 1 } else { q + 1 }
- }
- q
- }
-
- #[inline]
- fn rem_euclid(&self, v: &$t) -> Self {
- let r = self % v;
- if r < 0 {
- if *v < 0 {
- r - v
- } else {
- r + v
- }
- } else {
- r
- }
- }
- }
- )*}
-}
-
-macro_rules! euclid_uint_impl {
- ($($t:ty)*) => {$(
- euclid_forward_impl!($t);
-
- #[cfg(not(has_div_euclid))]
- impl Euclid for $t {
- #[inline]
- fn div_euclid(&self, v: &$t) -> Self {
- self / v
- }
-
- #[inline]
- fn rem_euclid(&self, v: &$t) -> Self {
- self % v
- }
- }
- )*}
-}
-
-euclid_int_impl!(isize i8 i16 i32 i64 i128);
-euclid_uint_impl!(usize u8 u16 u32 u64 u128);
-
-#[cfg(all(has_div_euclid, feature = "std"))]
-euclid_forward_impl!(f32 f64);
-
-#[cfg(not(all(has_div_euclid, feature = "std")))]
-impl Euclid for f32 {
- #[inline]
- fn div_euclid(&self, v: &f32) -> f32 {
- let q = <f32 as crate::float::FloatCore>::trunc(self / v);
- if self % v < 0.0 {
- return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
- }
- q
- }
-
- #[inline]
- fn rem_euclid(&self, v: &f32) -> f32 {
- let r = self % v;
- if r < 0.0 {
- r + <f32 as crate::float::FloatCore>::abs(*v)
- } else {
- r
- }
- }
-}
-
-#[cfg(not(all(has_div_euclid, feature = "std")))]
-impl Euclid for f64 {
- #[inline]
- fn div_euclid(&self, v: &f64) -> f64 {
- let q = <f64 as crate::float::FloatCore>::trunc(self / v);
- if self % v < 0.0 {
- return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
- }
- q
- }
-
- #[inline]
- fn rem_euclid(&self, v: &f64) -> f64 {
- let r = self % v;
- if r < 0.0 {
- r + <f64 as crate::float::FloatCore>::abs(*v)
- } else {
- r
- }
- }
-}
-
-pub trait CheckedEuclid: Euclid {
- /// Performs euclid division that returns `None` instead of panicking on division by zero
- /// and instead of wrapping around on underflow and overflow.
- fn checked_div_euclid(&self, v: &Self) -> Option<Self>;
-
- /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
- /// division by zero. If any of that happens, `None` is returned.
- fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;
-}
-
-macro_rules! checked_euclid_forward_impl {
- ($($t:ty)*) => {$(
- #[cfg(has_div_euclid)]
- impl CheckedEuclid for $t {
- #[inline]
- fn checked_div_euclid(&self, v: &$t) -> Option<Self> {
- <$t>::checked_div_euclid(*self, *v)
- }
-
- #[inline]
- fn checked_rem_euclid(&self, v: &$t) -> Option<Self> {
- <$t>::checked_rem_euclid(*self, *v)
- }
- }
- )*}
-}
-
-macro_rules! checked_euclid_int_impl {
- ($($t:ty)*) => {$(
- checked_euclid_forward_impl!($t);
-
- #[cfg(not(has_div_euclid))]
- impl CheckedEuclid for $t {
- #[inline]
- fn checked_div_euclid(&self, v: &$t) -> Option<$t> {
- if *v == 0 || (*self == Self::min_value() && *v == -1) {
- None
- } else {
- Some(Euclid::div_euclid(self, v))
- }
- }
-
- #[inline]
- fn checked_rem_euclid(&self, v: &$t) -> Option<$t> {
- if *v == 0 || (*self == Self::min_value() && *v == -1) {
- None
- } else {
- Some(Euclid::rem_euclid(self, v))
- }
- }
- }
- )*}
-}
-
-macro_rules! checked_euclid_uint_impl {
- ($($t:ty)*) => {$(
- checked_euclid_forward_impl!($t);
-
- #[cfg(not(has_div_euclid))]
- impl CheckedEuclid for $t {
- #[inline]
- fn checked_div_euclid(&self, v: &$t) -> Option<$t> {
- if *v == 0 {
- None
- } else {
- Some(Euclid::div_euclid(self, v))
- }
- }
-
- #[inline]
- fn checked_rem_euclid(&self, v: &$t) -> Option<$t> {
- if *v == 0 {
- None
- } else {
- Some(Euclid::rem_euclid(self, v))
- }
- }
- }
- )*}
-}
-
-checked_euclid_int_impl!(isize i8 i16 i32 i64 i128);
-checked_euclid_uint_impl!(usize u8 u16 u32 u64 u128);
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn euclid_unsigned() {
- macro_rules! test_euclid {
- ($($t:ident)+) => {
- $(
- {
- let x: $t = 10;
- let y: $t = 3;
- assert_eq!(Euclid::div_euclid(&x, &y), 3);
- assert_eq!(Euclid::rem_euclid(&x, &y), 1);
- }
- )+
- };
- }
-
- test_euclid!(usize u8 u16 u32 u64);
- }
-
- #[test]
- fn euclid_signed() {
- macro_rules! test_euclid {
- ($($t:ident)+) => {
- $(
- {
- let x: $t = 10;
- let y: $t = -3;
- assert_eq!(Euclid::div_euclid(&x, &y), -3);
- assert_eq!(Euclid::div_euclid(&-x, &y), 4);
- assert_eq!(Euclid::rem_euclid(&x, &y), 1);
- assert_eq!(Euclid::rem_euclid(&-x, &y), 2);
- let x: $t = $t::min_value() + 1;
- let y: $t = -1;
- assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value());
- }
- )+
- };
- }
-
- test_euclid!(isize i8 i16 i32 i64 i128);
- }
-
- #[test]
- fn euclid_float() {
- macro_rules! test_euclid {
- ($($t:ident)+) => {
- $(
- {
- let x: $t = 12.1;
- let y: $t = 3.2;
- assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x
- <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
- assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x
- <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
- assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x
- <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
- assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x
- <= 46.4 * <$t as crate::float::FloatCore>::epsilon());
- }
- )+
- };
- }
-
- test_euclid!(f32 f64);
- }
-
- #[test]
- fn euclid_checked() {
- macro_rules! test_euclid_checked {
- ($($t:ident)+) => {
- $(
- {
- assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None);
- assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None);
- assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None);
- assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None);
- }
- )+
- };
- }
-
- test_euclid_checked!(isize i8 i16 i32 i64 i128);
- }
-}
diff --git a/vendor/num-traits/src/ops/inv.rs b/vendor/num-traits/src/ops/inv.rs
deleted file mode 100644
index 7087d09..0000000
--- a/vendor/num-traits/src/ops/inv.rs
+++ /dev/null
@@ -1,47 +0,0 @@
-/// Unary operator for retrieving the multiplicative inverse, or reciprocal, of a value.
-pub trait Inv {
- /// The result after applying the operator.
- type Output;
-
- /// Returns the multiplicative inverse of `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use std::f64::INFINITY;
- /// use num_traits::Inv;
- ///
- /// assert_eq!(7.0.inv() * 7.0, 1.0);
- /// assert_eq!((-0.0).inv(), -INFINITY);
- /// ```
- fn inv(self) -> Self::Output;
-}
-
-impl Inv for f32 {
- type Output = f32;
- #[inline]
- fn inv(self) -> f32 {
- 1.0 / self
- }
-}
-impl Inv for f64 {
- type Output = f64;
- #[inline]
- fn inv(self) -> f64 {
- 1.0 / self
- }
-}
-impl<'a> Inv for &'a f32 {
- type Output = f32;
- #[inline]
- fn inv(self) -> f32 {
- 1.0 / *self
- }
-}
-impl<'a> Inv for &'a f64 {
- type Output = f64;
- #[inline]
- fn inv(self) -> f64 {
- 1.0 / *self
- }
-}
diff --git a/vendor/num-traits/src/ops/mod.rs b/vendor/num-traits/src/ops/mod.rs
deleted file mode 100644
index 2128d86..0000000
--- a/vendor/num-traits/src/ops/mod.rs
+++ /dev/null
@@ -1,8 +0,0 @@
-pub mod bytes;
-pub mod checked;
-pub mod euclid;
-pub mod inv;
-pub mod mul_add;
-pub mod overflowing;
-pub mod saturating;
-pub mod wrapping;
diff --git a/vendor/num-traits/src/ops/mul_add.rs b/vendor/num-traits/src/ops/mul_add.rs
deleted file mode 100644
index 51beb55..0000000
--- a/vendor/num-traits/src/ops/mul_add.rs
+++ /dev/null
@@ -1,149 +0,0 @@
-/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
-/// error, yielding a more accurate result than an unfused multiply-add.
-///
-/// Using `mul_add` can be more performant than an unfused multiply-add if
-/// the target architecture has a dedicated `fma` CPU instruction.
-///
-/// Note that `A` and `B` are `Self` by default, but this is not mandatory.
-///
-/// # Example
-///
-/// ```
-/// use std::f32;
-///
-/// let m = 10.0_f32;
-/// let x = 4.0_f32;
-/// let b = 60.0_f32;
-///
-/// // 100.0
-/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
-///
-/// assert!(abs_difference <= 100.0 * f32::EPSILON);
-/// ```
-pub trait MulAdd<A = Self, B = Self> {
- /// The resulting type after applying the fused multiply-add.
- type Output;
-
- /// Performs the fused multiply-add operation `(self * a) + b`
- fn mul_add(self, a: A, b: B) -> Self::Output;
-}
-
-/// The fused multiply-add assignment operation `*self = (*self * a) + b`
-pub trait MulAddAssign<A = Self, B = Self> {
- /// Performs the fused multiply-add assignment operation `*self = (*self * a) + b`
- fn mul_add_assign(&mut self, a: A, b: B);
-}
-
-#[cfg(any(feature = "std", feature = "libm"))]
-impl MulAdd<f32, f32> for f32 {
- type Output = Self;
-
- #[inline]
- fn mul_add(self, a: Self, b: Self) -> Self::Output {
- <Self as crate::Float>::mul_add(self, a, b)
- }
-}
-
-#[cfg(any(feature = "std", feature = "libm"))]
-impl MulAdd<f64, f64> for f64 {
- type Output = Self;
-
- #[inline]
- fn mul_add(self, a: Self, b: Self) -> Self::Output {
- <Self as crate::Float>::mul_add(self, a, b)
- }
-}
-
-macro_rules! mul_add_impl {
- ($trait_name:ident for $($t:ty)*) => {$(
- impl $trait_name for $t {
- type Output = Self;
-
- #[inline]
- fn mul_add(self, a: Self, b: Self) -> Self::Output {
- (self * a) + b
- }
- }
- )*}
-}
-
-mul_add_impl!(MulAdd for isize i8 i16 i32 i64 i128);
-mul_add_impl!(MulAdd for usize u8 u16 u32 u64 u128);
-
-#[cfg(any(feature = "std", feature = "libm"))]
-impl MulAddAssign<f32, f32> for f32 {
- #[inline]
- fn mul_add_assign(&mut self, a: Self, b: Self) {
- *self = <Self as crate::Float>::mul_add(*self, a, b)
- }
-}
-
-#[cfg(any(feature = "std", feature = "libm"))]
-impl MulAddAssign<f64, f64> for f64 {
- #[inline]
- fn mul_add_assign(&mut self, a: Self, b: Self) {
- *self = <Self as crate::Float>::mul_add(*self, a, b)
- }
-}
-
-macro_rules! mul_add_assign_impl {
- ($trait_name:ident for $($t:ty)*) => {$(
- impl $trait_name for $t {
- #[inline]
- fn mul_add_assign(&mut self, a: Self, b: Self) {
- *self = (*self * a) + b
- }
- }
- )*}
-}
-
-mul_add_assign_impl!(MulAddAssign for isize i8 i16 i32 i64 i128);
-mul_add_assign_impl!(MulAddAssign for usize u8 u16 u32 u64 u128);
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn mul_add_integer() {
- macro_rules! test_mul_add {
- ($($t:ident)+) => {
- $(
- {
- let m: $t = 2;
- let x: $t = 3;
- let b: $t = 4;
-
- assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b));
- }
- )+
- };
- }
-
- test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
- }
-
- #[test]
- #[cfg(feature = "std")]
- fn mul_add_float() {
- macro_rules! test_mul_add {
- ($($t:ident)+) => {
- $(
- {
- use core::$t;
-
- let m: $t = 12.0;
- let x: $t = 3.4;
- let b: $t = 5.6;
-
- let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs();
-
- assert!(abs_difference <= 46.4 * $t::EPSILON);
- }
- )+
- };
- }
-
- test_mul_add!(f32 f64);
- }
-}
diff --git a/vendor/num-traits/src/ops/overflowing.rs b/vendor/num-traits/src/ops/overflowing.rs
deleted file mode 100644
index c7a35a5..0000000
--- a/vendor/num-traits/src/ops/overflowing.rs
+++ /dev/null
@@ -1,96 +0,0 @@
-use core::ops::{Add, Mul, Sub};
-use core::{i128, i16, i32, i64, i8, isize};
-use core::{u128, u16, u32, u64, u8, usize};
-
-macro_rules! overflowing_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, v: &Self) -> (Self, bool) {
- <$t>::$method(*self, *v)
- }
- }
- };
-}
-
-/// Performs addition with a flag for overflow.
-pub trait OverflowingAdd: Sized + Add<Self, Output = Self> {
- /// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.
- /// If an overflow would have occurred then the wrapped value is returned.
- fn overflowing_add(&self, v: &Self) -> (Self, bool);
-}
-
-overflowing_impl!(OverflowingAdd, overflowing_add, u8);
-overflowing_impl!(OverflowingAdd, overflowing_add, u16);
-overflowing_impl!(OverflowingAdd, overflowing_add, u32);
-overflowing_impl!(OverflowingAdd, overflowing_add, u64);
-overflowing_impl!(OverflowingAdd, overflowing_add, usize);
-overflowing_impl!(OverflowingAdd, overflowing_add, u128);
-
-overflowing_impl!(OverflowingAdd, overflowing_add, i8);
-overflowing_impl!(OverflowingAdd, overflowing_add, i16);
-overflowing_impl!(OverflowingAdd, overflowing_add, i32);
-overflowing_impl!(OverflowingAdd, overflowing_add, i64);
-overflowing_impl!(OverflowingAdd, overflowing_add, isize);
-overflowing_impl!(OverflowingAdd, overflowing_add, i128);
-
-/// Performs substraction with a flag for overflow.
-pub trait OverflowingSub: Sized + Sub<Self, Output = Self> {
- /// Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.
- /// If an overflow would have occurred then the wrapped value is returned.
- fn overflowing_sub(&self, v: &Self) -> (Self, bool);
-}
-
-overflowing_impl!(OverflowingSub, overflowing_sub, u8);
-overflowing_impl!(OverflowingSub, overflowing_sub, u16);
-overflowing_impl!(OverflowingSub, overflowing_sub, u32);
-overflowing_impl!(OverflowingSub, overflowing_sub, u64);
-overflowing_impl!(OverflowingSub, overflowing_sub, usize);
-overflowing_impl!(OverflowingSub, overflowing_sub, u128);
-
-overflowing_impl!(OverflowingSub, overflowing_sub, i8);
-overflowing_impl!(OverflowingSub, overflowing_sub, i16);
-overflowing_impl!(OverflowingSub, overflowing_sub, i32);
-overflowing_impl!(OverflowingSub, overflowing_sub, i64);
-overflowing_impl!(OverflowingSub, overflowing_sub, isize);
-overflowing_impl!(OverflowingSub, overflowing_sub, i128);
-
-/// Performs multiplication with a flag for overflow.
-pub trait OverflowingMul: Sized + Mul<Self, Output = Self> {
- /// Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.
- /// If an overflow would have occurred then the wrapped value is returned.
- fn overflowing_mul(&self, v: &Self) -> (Self, bool);
-}
-
-overflowing_impl!(OverflowingMul, overflowing_mul, u8);
-overflowing_impl!(OverflowingMul, overflowing_mul, u16);
-overflowing_impl!(OverflowingMul, overflowing_mul, u32);
-overflowing_impl!(OverflowingMul, overflowing_mul, u64);
-overflowing_impl!(OverflowingMul, overflowing_mul, usize);
-overflowing_impl!(OverflowingMul, overflowing_mul, u128);
-
-overflowing_impl!(OverflowingMul, overflowing_mul, i8);
-overflowing_impl!(OverflowingMul, overflowing_mul, i16);
-overflowing_impl!(OverflowingMul, overflowing_mul, i32);
-overflowing_impl!(OverflowingMul, overflowing_mul, i64);
-overflowing_impl!(OverflowingMul, overflowing_mul, isize);
-overflowing_impl!(OverflowingMul, overflowing_mul, i128);
-
-#[test]
-fn test_overflowing_traits() {
- fn overflowing_add<T: OverflowingAdd>(a: T, b: T) -> (T, bool) {
- a.overflowing_add(&b)
- }
- fn overflowing_sub<T: OverflowingSub>(a: T, b: T) -> (T, bool) {
- a.overflowing_sub(&b)
- }
- fn overflowing_mul<T: OverflowingMul>(a: T, b: T) -> (T, bool) {
- a.overflowing_mul(&b)
- }
- assert_eq!(overflowing_add(5i16, 2), (7, false));
- assert_eq!(overflowing_add(i16::MAX, 1), (i16::MIN, true));
- assert_eq!(overflowing_sub(5i16, 2), (3, false));
- assert_eq!(overflowing_sub(i16::MIN, 1), (i16::MAX, true));
- assert_eq!(overflowing_mul(5i16, 2), (10, false));
- assert_eq!(overflowing_mul(1_000_000_000i32, 10), (1410065408, true));
-}
diff --git a/vendor/num-traits/src/ops/saturating.rs b/vendor/num-traits/src/ops/saturating.rs
deleted file mode 100644
index 16a0045..0000000
--- a/vendor/num-traits/src/ops/saturating.rs
+++ /dev/null
@@ -1,130 +0,0 @@
-use core::ops::{Add, Mul, Sub};
-
-/// Saturating math operations. Deprecated, use `SaturatingAdd`, `SaturatingSub` and
-/// `SaturatingMul` instead.
-pub trait Saturating {
- /// Saturating addition operator.
- /// Returns a+b, saturating at the numeric bounds instead of overflowing.
- fn saturating_add(self, v: Self) -> Self;
-
- /// Saturating subtraction operator.
- /// Returns a-b, saturating at the numeric bounds instead of overflowing.
- fn saturating_sub(self, v: Self) -> Self;
-}
-
-macro_rules! deprecated_saturating_impl {
- ($trait_name:ident for $($t:ty)*) => {$(
- impl $trait_name for $t {
- #[inline]
- fn saturating_add(self, v: Self) -> Self {
- Self::saturating_add(self, v)
- }
-
- #[inline]
- fn saturating_sub(self, v: Self) -> Self {
- Self::saturating_sub(self, v)
- }
- }
- )*}
-}
-
-deprecated_saturating_impl!(Saturating for isize i8 i16 i32 i64 i128);
-deprecated_saturating_impl!(Saturating for usize u8 u16 u32 u64 u128);
-
-macro_rules! saturating_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, v: &Self) -> Self {
- <$t>::$method(*self, *v)
- }
- }
- };
-}
-
-/// Performs addition that saturates at the numeric bounds instead of overflowing.
-pub trait SaturatingAdd: Sized + Add<Self, Output = Self> {
- /// Saturating addition. Computes `self + other`, saturating at the relevant high or low boundary of
- /// the type.
- fn saturating_add(&self, v: &Self) -> Self;
-}
-
-saturating_impl!(SaturatingAdd, saturating_add, u8);
-saturating_impl!(SaturatingAdd, saturating_add, u16);
-saturating_impl!(SaturatingAdd, saturating_add, u32);
-saturating_impl!(SaturatingAdd, saturating_add, u64);
-saturating_impl!(SaturatingAdd, saturating_add, usize);
-saturating_impl!(SaturatingAdd, saturating_add, u128);
-
-saturating_impl!(SaturatingAdd, saturating_add, i8);
-saturating_impl!(SaturatingAdd, saturating_add, i16);
-saturating_impl!(SaturatingAdd, saturating_add, i32);
-saturating_impl!(SaturatingAdd, saturating_add, i64);
-saturating_impl!(SaturatingAdd, saturating_add, isize);
-saturating_impl!(SaturatingAdd, saturating_add, i128);
-
-/// Performs subtraction that saturates at the numeric bounds instead of overflowing.
-pub trait SaturatingSub: Sized + Sub<Self, Output = Self> {
- /// Saturating subtraction. Computes `self - other`, saturating at the relevant high or low boundary of
- /// the type.
- fn saturating_sub(&self, v: &Self) -> Self;
-}
-
-saturating_impl!(SaturatingSub, saturating_sub, u8);
-saturating_impl!(SaturatingSub, saturating_sub, u16);
-saturating_impl!(SaturatingSub, saturating_sub, u32);
-saturating_impl!(SaturatingSub, saturating_sub, u64);
-saturating_impl!(SaturatingSub, saturating_sub, usize);
-saturating_impl!(SaturatingSub, saturating_sub, u128);
-
-saturating_impl!(SaturatingSub, saturating_sub, i8);
-saturating_impl!(SaturatingSub, saturating_sub, i16);
-saturating_impl!(SaturatingSub, saturating_sub, i32);
-saturating_impl!(SaturatingSub, saturating_sub, i64);
-saturating_impl!(SaturatingSub, saturating_sub, isize);
-saturating_impl!(SaturatingSub, saturating_sub, i128);
-
-/// Performs multiplication that saturates at the numeric bounds instead of overflowing.
-pub trait SaturatingMul: Sized + Mul<Self, Output = Self> {
- /// Saturating multiplication. Computes `self * other`, saturating at the relevant high or low boundary of
- /// the type.
- fn saturating_mul(&self, v: &Self) -> Self;
-}
-
-saturating_impl!(SaturatingMul, saturating_mul, u8);
-saturating_impl!(SaturatingMul, saturating_mul, u16);
-saturating_impl!(SaturatingMul, saturating_mul, u32);
-saturating_impl!(SaturatingMul, saturating_mul, u64);
-saturating_impl!(SaturatingMul, saturating_mul, usize);
-saturating_impl!(SaturatingMul, saturating_mul, u128);
-
-saturating_impl!(SaturatingMul, saturating_mul, i8);
-saturating_impl!(SaturatingMul, saturating_mul, i16);
-saturating_impl!(SaturatingMul, saturating_mul, i32);
-saturating_impl!(SaturatingMul, saturating_mul, i64);
-saturating_impl!(SaturatingMul, saturating_mul, isize);
-saturating_impl!(SaturatingMul, saturating_mul, i128);
-
-// TODO: add SaturatingNeg for signed integer primitives once the saturating_neg() API is stable.
-
-#[test]
-fn test_saturating_traits() {
- fn saturating_add<T: SaturatingAdd>(a: T, b: T) -> T {
- a.saturating_add(&b)
- }
- fn saturating_sub<T: SaturatingSub>(a: T, b: T) -> T {
- a.saturating_sub(&b)
- }
- fn saturating_mul<T: SaturatingMul>(a: T, b: T) -> T {
- a.saturating_mul(&b)
- }
- assert_eq!(saturating_add(255, 1), 255u8);
- assert_eq!(saturating_add(127, 1), 127i8);
- assert_eq!(saturating_add(-128, -1), -128i8);
- assert_eq!(saturating_sub(0, 1), 0u8);
- assert_eq!(saturating_sub(-128, 1), -128i8);
- assert_eq!(saturating_sub(127, -1), 127i8);
- assert_eq!(saturating_mul(255, 2), 255u8);
- assert_eq!(saturating_mul(127, 2), 127i8);
- assert_eq!(saturating_mul(-128, 2), -128i8);
-}
diff --git a/vendor/num-traits/src/ops/wrapping.rs b/vendor/num-traits/src/ops/wrapping.rs
deleted file mode 100644
index 3a8b331..0000000
--- a/vendor/num-traits/src/ops/wrapping.rs
+++ /dev/null
@@ -1,327 +0,0 @@
-use core::num::Wrapping;
-use core::ops::{Add, Mul, Neg, Shl, Shr, Sub};
-
-macro_rules! wrapping_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, v: &Self) -> Self {
- <$t>::$method(*self, *v)
- }
- }
- };
- ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
- impl $trait_name<$rhs> for $t {
- #[inline]
- fn $method(&self, v: &$rhs) -> Self {
- <$t>::$method(*self, *v)
- }
- }
- };
-}
-
-/// Performs addition that wraps around on overflow.
-pub trait WrappingAdd: Sized + Add<Self, Output = Self> {
- /// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
- /// the type.
- fn wrapping_add(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingAdd, wrapping_add, u8);
-wrapping_impl!(WrappingAdd, wrapping_add, u16);
-wrapping_impl!(WrappingAdd, wrapping_add, u32);
-wrapping_impl!(WrappingAdd, wrapping_add, u64);
-wrapping_impl!(WrappingAdd, wrapping_add, usize);
-wrapping_impl!(WrappingAdd, wrapping_add, u128);
-
-wrapping_impl!(WrappingAdd, wrapping_add, i8);
-wrapping_impl!(WrappingAdd, wrapping_add, i16);
-wrapping_impl!(WrappingAdd, wrapping_add, i32);
-wrapping_impl!(WrappingAdd, wrapping_add, i64);
-wrapping_impl!(WrappingAdd, wrapping_add, isize);
-wrapping_impl!(WrappingAdd, wrapping_add, i128);
-
-/// Performs subtraction that wraps around on overflow.
-pub trait WrappingSub: Sized + Sub<Self, Output = Self> {
- /// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
- /// of the type.
- fn wrapping_sub(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingSub, wrapping_sub, u8);
-wrapping_impl!(WrappingSub, wrapping_sub, u16);
-wrapping_impl!(WrappingSub, wrapping_sub, u32);
-wrapping_impl!(WrappingSub, wrapping_sub, u64);
-wrapping_impl!(WrappingSub, wrapping_sub, usize);
-wrapping_impl!(WrappingSub, wrapping_sub, u128);
-
-wrapping_impl!(WrappingSub, wrapping_sub, i8);
-wrapping_impl!(WrappingSub, wrapping_sub, i16);
-wrapping_impl!(WrappingSub, wrapping_sub, i32);
-wrapping_impl!(WrappingSub, wrapping_sub, i64);
-wrapping_impl!(WrappingSub, wrapping_sub, isize);
-wrapping_impl!(WrappingSub, wrapping_sub, i128);
-
-/// Performs multiplication that wraps around on overflow.
-pub trait WrappingMul: Sized + Mul<Self, Output = Self> {
- /// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
- /// of the type.
- fn wrapping_mul(&self, v: &Self) -> Self;
-}
-
-wrapping_impl!(WrappingMul, wrapping_mul, u8);
-wrapping_impl!(WrappingMul, wrapping_mul, u16);
-wrapping_impl!(WrappingMul, wrapping_mul, u32);
-wrapping_impl!(WrappingMul, wrapping_mul, u64);
-wrapping_impl!(WrappingMul, wrapping_mul, usize);
-wrapping_impl!(WrappingMul, wrapping_mul, u128);
-
-wrapping_impl!(WrappingMul, wrapping_mul, i8);
-wrapping_impl!(WrappingMul, wrapping_mul, i16);
-wrapping_impl!(WrappingMul, wrapping_mul, i32);
-wrapping_impl!(WrappingMul, wrapping_mul, i64);
-wrapping_impl!(WrappingMul, wrapping_mul, isize);
-wrapping_impl!(WrappingMul, wrapping_mul, i128);
-
-macro_rules! wrapping_unary_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self) -> $t {
- <$t>::$method(*self)
- }
- }
- };
-}
-
-/// Performs a negation that does not panic.
-pub trait WrappingNeg: Sized {
- /// Wrapping (modular) negation. Computes `-self`,
- /// wrapping around at the boundary of the type.
- ///
- /// Since unsigned types do not have negative equivalents
- /// all applications of this function will wrap (except for `-0`).
- /// For values smaller than the corresponding signed type's maximum
- /// the result is the same as casting the corresponding signed value.
- /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
- /// `MAX` is the corresponding signed type's maximum.
- ///
- /// ```
- /// use num_traits::WrappingNeg;
- ///
- /// assert_eq!(100i8.wrapping_neg(), -100);
- /// assert_eq!((-100i8).wrapping_neg(), 100);
- /// assert_eq!((-128i8).wrapping_neg(), -128); // wrapped!
- /// ```
- fn wrapping_neg(&self) -> Self;
-}
-
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, u8);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, u16);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, u32);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, u64);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, usize);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, u128);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, i8);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, i16);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, i32);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, i64);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, isize);
-wrapping_unary_impl!(WrappingNeg, wrapping_neg, i128);
-
-macro_rules! wrapping_shift_impl {
- ($trait_name:ident, $method:ident, $t:ty) => {
- impl $trait_name for $t {
- #[inline]
- fn $method(&self, rhs: u32) -> $t {
- <$t>::$method(*self, rhs)
- }
- }
- };
-}
-
-/// Performs a left shift that does not panic.
-pub trait WrappingShl: Sized + Shl<usize, Output = Self> {
- /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
- /// where `mask` removes any high order bits of `rhs` that would
- /// cause the shift to exceed the bitwidth of the type.
- ///
- /// ```
- /// use num_traits::WrappingShl;
- ///
- /// let x: u16 = 0x0001;
- ///
- /// assert_eq!(WrappingShl::wrapping_shl(&x, 0), 0x0001);
- /// assert_eq!(WrappingShl::wrapping_shl(&x, 1), 0x0002);
- /// assert_eq!(WrappingShl::wrapping_shl(&x, 15), 0x8000);
- /// assert_eq!(WrappingShl::wrapping_shl(&x, 16), 0x0001);
- /// ```
- fn wrapping_shl(&self, rhs: u32) -> Self;
-}
-
-wrapping_shift_impl!(WrappingShl, wrapping_shl, u8);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, u16);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, u32);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, u64);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, usize);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, u128);
-
-wrapping_shift_impl!(WrappingShl, wrapping_shl, i8);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, i16);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, i32);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, i64);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, isize);
-wrapping_shift_impl!(WrappingShl, wrapping_shl, i128);
-
-/// Performs a right shift that does not panic.
-pub trait WrappingShr: Sized + Shr<usize, Output = Self> {
- /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
- /// where `mask` removes any high order bits of `rhs` that would
- /// cause the shift to exceed the bitwidth of the type.
- ///
- /// ```
- /// use num_traits::WrappingShr;
- ///
- /// let x: u16 = 0x8000;
- ///
- /// assert_eq!(WrappingShr::wrapping_shr(&x, 0), 0x8000);
- /// assert_eq!(WrappingShr::wrapping_shr(&x, 1), 0x4000);
- /// assert_eq!(WrappingShr::wrapping_shr(&x, 15), 0x0001);
- /// assert_eq!(WrappingShr::wrapping_shr(&x, 16), 0x8000);
- /// ```
- fn wrapping_shr(&self, rhs: u32) -> Self;
-}
-
-wrapping_shift_impl!(WrappingShr, wrapping_shr, u8);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, u16);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, u32);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, u64);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, usize);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, u128);
-
-wrapping_shift_impl!(WrappingShr, wrapping_shr, i8);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, i16);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, i32);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, i64);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, isize);
-wrapping_shift_impl!(WrappingShr, wrapping_shr, i128);
-
-// Well this is a bit funny, but all the more appropriate.
-impl<T: WrappingAdd> WrappingAdd for Wrapping<T>
-where
- Wrapping<T>: Add<Output = Wrapping<T>>,
-{
- fn wrapping_add(&self, v: &Self) -> Self {
- Wrapping(self.0.wrapping_add(&v.0))
- }
-}
-impl<T: WrappingSub> WrappingSub for Wrapping<T>
-where
- Wrapping<T>: Sub<Output = Wrapping<T>>,
-{
- fn wrapping_sub(&self, v: &Self) -> Self {
- Wrapping(self.0.wrapping_sub(&v.0))
- }
-}
-impl<T: WrappingMul> WrappingMul for Wrapping<T>
-where
- Wrapping<T>: Mul<Output = Wrapping<T>>,
-{
- fn wrapping_mul(&self, v: &Self) -> Self {
- Wrapping(self.0.wrapping_mul(&v.0))
- }
-}
-impl<T: WrappingNeg> WrappingNeg for Wrapping<T>
-where
- Wrapping<T>: Neg<Output = Wrapping<T>>,
-{
- fn wrapping_neg(&self) -> Self {
- Wrapping(self.0.wrapping_neg())
- }
-}
-impl<T: WrappingShl> WrappingShl for Wrapping<T>
-where
- Wrapping<T>: Shl<usize, Output = Wrapping<T>>,
-{
- fn wrapping_shl(&self, rhs: u32) -> Self {
- Wrapping(self.0.wrapping_shl(rhs))
- }
-}
-impl<T: WrappingShr> WrappingShr for Wrapping<T>
-where
- Wrapping<T>: Shr<usize, Output = Wrapping<T>>,
-{
- fn wrapping_shr(&self, rhs: u32) -> Self {
- Wrapping(self.0.wrapping_shr(rhs))
- }
-}
-
-#[test]
-fn test_wrapping_traits() {
- fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T {
- a.wrapping_add(&b)
- }
- fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T {
- a.wrapping_sub(&b)
- }
- fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T {
- a.wrapping_mul(&b)
- }
- fn wrapping_neg<T: WrappingNeg>(a: T) -> T {
- a.wrapping_neg()
- }
- fn wrapping_shl<T: WrappingShl>(a: T, b: u32) -> T {
- a.wrapping_shl(b)
- }
- fn wrapping_shr<T: WrappingShr>(a: T, b: u32) -> T {
- a.wrapping_shr(b)
- }
- assert_eq!(wrapping_add(255, 1), 0u8);
- assert_eq!(wrapping_sub(0, 1), 255u8);
- assert_eq!(wrapping_mul(255, 2), 254u8);
- assert_eq!(wrapping_neg(255), 1u8);
- assert_eq!(wrapping_shl(255, 8), 255u8);
- assert_eq!(wrapping_shr(255, 8), 255u8);
- assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
- assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
- assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
- assert_eq!(wrapping_neg(255), (-Wrapping(255u8)).0);
- assert_eq!(wrapping_shl(255, 8), (Wrapping(255u8) << 8).0);
- assert_eq!(wrapping_shr(255, 8), (Wrapping(255u8) >> 8).0);
-}
-
-#[test]
-fn wrapping_is_wrappingadd() {
- fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
- require_wrappingadd(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingsub() {
- fn require_wrappingsub<T: WrappingSub>(_: &T) {}
- require_wrappingsub(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingmul() {
- fn require_wrappingmul<T: WrappingMul>(_: &T) {}
- require_wrappingmul(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingneg() {
- fn require_wrappingneg<T: WrappingNeg>(_: &T) {}
- require_wrappingneg(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingshl() {
- fn require_wrappingshl<T: WrappingShl>(_: &T) {}
- require_wrappingshl(&Wrapping(42));
-}
-
-#[test]
-fn wrapping_is_wrappingshr() {
- fn require_wrappingshr<T: WrappingShr>(_: &T) {}
- require_wrappingshr(&Wrapping(42));
-}
diff --git a/vendor/num-traits/src/pow.rs b/vendor/num-traits/src/pow.rs
deleted file mode 100644
index ef51c95..0000000
--- a/vendor/num-traits/src/pow.rs
+++ /dev/null
@@ -1,242 +0,0 @@
-use crate::{CheckedMul, One};
-use core::num::Wrapping;
-use core::ops::Mul;
-
-/// Binary operator for raising a value to a power.
-pub trait Pow<RHS> {
- /// The result after applying the operator.
- type Output;
-
- /// Returns `self` to the power `rhs`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::Pow;
- /// assert_eq!(Pow::pow(10u32, 2u32), 100);
- /// ```
- fn pow(self, rhs: RHS) -> Self::Output;
-}
-
-macro_rules! pow_impl {
- ($t:ty) => {
- pow_impl!($t, u8);
- pow_impl!($t, usize);
-
- // FIXME: these should be possible
- // pow_impl!($t, u16);
- // pow_impl!($t, u32);
- // pow_impl!($t, u64);
- };
- ($t:ty, $rhs:ty) => {
- pow_impl!($t, $rhs, usize, pow);
- };
- ($t:ty, $rhs:ty, $desired_rhs:ty, $method:expr) => {
- impl Pow<$rhs> for $t {
- type Output = $t;
- #[inline]
- fn pow(self, rhs: $rhs) -> $t {
- ($method)(self, <$desired_rhs>::from(rhs))
- }
- }
-
- impl<'a> Pow<&'a $rhs> for $t {
- type Output = $t;
- #[inline]
- fn pow(self, rhs: &'a $rhs) -> $t {
- ($method)(self, <$desired_rhs>::from(*rhs))
- }
- }
-
- impl<'a> Pow<$rhs> for &'a $t {
- type Output = $t;
- #[inline]
- fn pow(self, rhs: $rhs) -> $t {
- ($method)(*self, <$desired_rhs>::from(rhs))
- }
- }
-
- impl<'a, 'b> Pow<&'a $rhs> for &'b $t {
- type Output = $t;
- #[inline]
- fn pow(self, rhs: &'a $rhs) -> $t {
- ($method)(*self, <$desired_rhs>::from(*rhs))
- }
- }
- };
-}
-
-pow_impl!(u8, u8, u32, u8::pow);
-pow_impl!(u8, u16, u32, u8::pow);
-pow_impl!(u8, u32, u32, u8::pow);
-pow_impl!(u8, usize);
-pow_impl!(i8, u8, u32, i8::pow);
-pow_impl!(i8, u16, u32, i8::pow);
-pow_impl!(i8, u32, u32, i8::pow);
-pow_impl!(i8, usize);
-pow_impl!(u16, u8, u32, u16::pow);
-pow_impl!(u16, u16, u32, u16::pow);
-pow_impl!(u16, u32, u32, u16::pow);
-pow_impl!(u16, usize);
-pow_impl!(i16, u8, u32, i16::pow);
-pow_impl!(i16, u16, u32, i16::pow);
-pow_impl!(i16, u32, u32, i16::pow);
-pow_impl!(i16, usize);
-pow_impl!(u32, u8, u32, u32::pow);
-pow_impl!(u32, u16, u32, u32::pow);
-pow_impl!(u32, u32, u32, u32::pow);
-pow_impl!(u32, usize);
-pow_impl!(i32, u8, u32, i32::pow);
-pow_impl!(i32, u16, u32, i32::pow);
-pow_impl!(i32, u32, u32, i32::pow);
-pow_impl!(i32, usize);
-pow_impl!(u64, u8, u32, u64::pow);
-pow_impl!(u64, u16, u32, u64::pow);
-pow_impl!(u64, u32, u32, u64::pow);
-pow_impl!(u64, usize);
-pow_impl!(i64, u8, u32, i64::pow);
-pow_impl!(i64, u16, u32, i64::pow);
-pow_impl!(i64, u32, u32, i64::pow);
-pow_impl!(i64, usize);
-
-pow_impl!(u128, u8, u32, u128::pow);
-pow_impl!(u128, u16, u32, u128::pow);
-pow_impl!(u128, u32, u32, u128::pow);
-pow_impl!(u128, usize);
-
-pow_impl!(i128, u8, u32, i128::pow);
-pow_impl!(i128, u16, u32, i128::pow);
-pow_impl!(i128, u32, u32, i128::pow);
-pow_impl!(i128, usize);
-
-pow_impl!(usize, u8, u32, usize::pow);
-pow_impl!(usize, u16, u32, usize::pow);
-pow_impl!(usize, u32, u32, usize::pow);
-pow_impl!(usize, usize);
-pow_impl!(isize, u8, u32, isize::pow);
-pow_impl!(isize, u16, u32, isize::pow);
-pow_impl!(isize, u32, u32, isize::pow);
-pow_impl!(isize, usize);
-pow_impl!(Wrapping<u8>);
-pow_impl!(Wrapping<i8>);
-pow_impl!(Wrapping<u16>);
-pow_impl!(Wrapping<i16>);
-pow_impl!(Wrapping<u32>);
-pow_impl!(Wrapping<i32>);
-pow_impl!(Wrapping<u64>);
-pow_impl!(Wrapping<i64>);
-pow_impl!(Wrapping<u128>);
-pow_impl!(Wrapping<i128>);
-pow_impl!(Wrapping<usize>);
-pow_impl!(Wrapping<isize>);
-
-// FIXME: these should be possible
-// pow_impl!(u8, u64);
-// pow_impl!(i16, u64);
-// pow_impl!(i8, u64);
-// pow_impl!(u16, u64);
-// pow_impl!(u32, u64);
-// pow_impl!(i32, u64);
-// pow_impl!(u64, u64);
-// pow_impl!(i64, u64);
-// pow_impl!(usize, u64);
-// pow_impl!(isize, u64);
-
-#[cfg(any(feature = "std", feature = "libm"))]
-mod float_impls {
- use super::Pow;
- use crate::Float;
-
- pow_impl!(f32, i8, i32, <f32 as Float>::powi);
- pow_impl!(f32, u8, i32, <f32 as Float>::powi);
- pow_impl!(f32, i16, i32, <f32 as Float>::powi);
- pow_impl!(f32, u16, i32, <f32 as Float>::powi);
- pow_impl!(f32, i32, i32, <f32 as Float>::powi);
- pow_impl!(f64, i8, i32, <f64 as Float>::powi);
- pow_impl!(f64, u8, i32, <f64 as Float>::powi);
- pow_impl!(f64, i16, i32, <f64 as Float>::powi);
- pow_impl!(f64, u16, i32, <f64 as Float>::powi);
- pow_impl!(f64, i32, i32, <f64 as Float>::powi);
- pow_impl!(f32, f32, f32, <f32 as Float>::powf);
- pow_impl!(f64, f32, f64, <f64 as Float>::powf);
- pow_impl!(f64, f64, f64, <f64 as Float>::powf);
-}
-
-/// Raises a value to the power of exp, using exponentiation by squaring.
-///
-/// Note that `0⁰` (`pow(0, 0)`) returns `1`. Mathematically this is undefined.
-///
-/// # Example
-///
-/// ```rust
-/// use num_traits::pow;
-///
-/// assert_eq!(pow(2i8, 4), 16);
-/// assert_eq!(pow(6u8, 3), 216);
-/// assert_eq!(pow(0u8, 0), 1); // Be aware if this case affects you
-/// ```
-#[inline]
-pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
- if exp == 0 {
- return T::one();
- }
-
- while exp & 1 == 0 {
- base = base.clone() * base;
- exp >>= 1;
- }
- if exp == 1 {
- return base;
- }
-
- let mut acc = base.clone();
- while exp > 1 {
- exp >>= 1;
- base = base.clone() * base;
- if exp & 1 == 1 {
- acc = acc * base.clone();
- }
- }
- acc
-}
-
-/// Raises a value to the power of exp, returning `None` if an overflow occurred.
-///
-/// Note that `0⁰` (`checked_pow(0, 0)`) returns `Some(1)`. Mathematically this is undefined.
-///
-/// Otherwise same as the `pow` function.
-///
-/// # Example
-///
-/// ```rust
-/// use num_traits::checked_pow;
-///
-/// assert_eq!(checked_pow(2i8, 4), Some(16));
-/// assert_eq!(checked_pow(7i8, 8), None);
-/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
-/// assert_eq!(checked_pow(0u32, 0), Some(1)); // Be aware if this case affect you
-/// ```
-#[inline]
-pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
- if exp == 0 {
- return Some(T::one());
- }
-
- while exp & 1 == 0 {
- base = base.checked_mul(&base)?;
- exp >>= 1;
- }
- if exp == 1 {
- return Some(base);
- }
-
- let mut acc = base.clone();
- while exp > 1 {
- exp >>= 1;
- base = base.checked_mul(&base)?;
- if exp & 1 == 1 {
- acc = acc.checked_mul(&base)?;
- }
- }
- Some(acc)
-}
diff --git a/vendor/num-traits/src/real.rs b/vendor/num-traits/src/real.rs
deleted file mode 100644
index d4feee0..0000000
--- a/vendor/num-traits/src/real.rs
+++ /dev/null
@@ -1,834 +0,0 @@
-#![cfg(any(feature = "std", feature = "libm"))]
-
-use core::ops::Neg;
-
-use crate::{Float, Num, NumCast};
-
-// NOTE: These doctests have the same issue as those in src/float.rs.
-// They're testing the inherent methods directly, and not those of `Real`.
-
-/// A trait for real number types that do not necessarily have
-/// floating-point-specific characteristics such as NaN and infinity.
-///
-/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
-/// for a list of data types that could meaningfully implement this trait.
-///
-/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
-pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
-
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
-
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self;
-
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x: f64 = Real::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
-
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
-
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
-
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
-
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
-
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
-
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
- /// ```
- fn abs(self) -> Self;
-
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
-
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
-
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
-
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error, yielding a more accurate result than an unfused multiply-add.
- ///
- /// Using `mul_add` can be more performant than an unfused multiply-add if
- /// the target architecture has a dedicated `fma` CPU instruction.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
-
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
-
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
-
- /// Raise a number to a real number power.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
-
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative floating-point number.
- ///
- /// # Panics
- ///
- /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
- /// ```
- fn sqrt(self) -> Self;
-
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
-
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
-
- /// Returns the natural logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
-
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
-
- /// Returns the base 2 logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
-
- /// Returns the base 10 logarithm of the number.
- ///
- /// # Panics
- ///
- /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
- ///
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
-
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn to_degrees(self) -> Self;
-
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn to_radians(self) -> Self;
-
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
-
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
-
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
-
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
-
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
-
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
-
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
-
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
-
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if the number is outside the range [-1, 1].
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
-
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if the number is outside the range [-1, 1].
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
-
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
-
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
-
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
-
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
-
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// # Panics
- ///
- /// If this type does not support a NaN representation, this function should panic
- /// if `self-1 <= 0`.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
-
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
-
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
-
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
-
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
-
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::real::Real;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
-
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::real::Real;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
-}
-
-impl<T: Float> Real for T {
- forward! {
- Float::min_value() -> Self;
- Float::min_positive_value() -> Self;
- Float::epsilon() -> Self;
- Float::max_value() -> Self;
- }
- forward! {
- Float::floor(self) -> Self;
- Float::ceil(self) -> Self;
- Float::round(self) -> Self;
- Float::trunc(self) -> Self;
- Float::fract(self) -> Self;
- Float::abs(self) -> Self;
- Float::signum(self) -> Self;
- Float::is_sign_positive(self) -> bool;
- Float::is_sign_negative(self) -> bool;
- Float::mul_add(self, a: Self, b: Self) -> Self;
- Float::recip(self) -> Self;
- Float::powi(self, n: i32) -> Self;
- Float::powf(self, n: Self) -> Self;
- Float::sqrt(self) -> Self;
- Float::exp(self) -> Self;
- Float::exp2(self) -> Self;
- Float::ln(self) -> Self;
- Float::log(self, base: Self) -> Self;
- Float::log2(self) -> Self;
- Float::log10(self) -> Self;
- Float::to_degrees(self) -> Self;
- Float::to_radians(self) -> Self;
- Float::max(self, other: Self) -> Self;
- Float::min(self, other: Self) -> Self;
- Float::abs_sub(self, other: Self) -> Self;
- Float::cbrt(self) -> Self;
- Float::hypot(self, other: Self) -> Self;
- Float::sin(self) -> Self;
- Float::cos(self) -> Self;
- Float::tan(self) -> Self;
- Float::asin(self) -> Self;
- Float::acos(self) -> Self;
- Float::atan(self) -> Self;
- Float::atan2(self, other: Self) -> Self;
- Float::sin_cos(self) -> (Self, Self);
- Float::exp_m1(self) -> Self;
- Float::ln_1p(self) -> Self;
- Float::sinh(self) -> Self;
- Float::cosh(self) -> Self;
- Float::tanh(self) -> Self;
- Float::asinh(self) -> Self;
- Float::acosh(self) -> Self;
- Float::atanh(self) -> Self;
- }
-}
diff --git a/vendor/num-traits/src/sign.rs b/vendor/num-traits/src/sign.rs
deleted file mode 100644
index a0d6b0f..0000000
--- a/vendor/num-traits/src/sign.rs
+++ /dev/null
@@ -1,216 +0,0 @@
-use core::num::Wrapping;
-use core::ops::Neg;
-
-use crate::float::FloatCore;
-use crate::Num;
-
-/// Useful functions for signed numbers (i.e. numbers that can be negative).
-pub trait Signed: Sized + Num + Neg<Output = Self> {
- /// Computes the absolute value.
- ///
- /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
- ///
- /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
- fn abs(&self) -> Self;
-
- /// The positive difference of two numbers.
- ///
- /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
- /// between `self` and `other` is returned.
- fn abs_sub(&self, other: &Self) -> Self;
-
- /// Returns the sign of the number.
- ///
- /// For `f32` and `f64`:
- ///
- /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
- /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
- /// * `NaN` if the number is `NaN`
- ///
- /// For signed integers:
- ///
- /// * `0` if the number is zero
- /// * `1` if the number is positive
- /// * `-1` if the number is negative
- fn signum(&self) -> Self;
-
- /// Returns true if the number is positive and false if the number is zero or negative.
- fn is_positive(&self) -> bool;
-
- /// Returns true if the number is negative and false if the number is zero or positive.
- fn is_negative(&self) -> bool;
-}
-
-macro_rules! signed_impl {
- ($($t:ty)*) => ($(
- impl Signed for $t {
- #[inline]
- fn abs(&self) -> $t {
- if self.is_negative() { -*self } else { *self }
- }
-
- #[inline]
- fn abs_sub(&self, other: &$t) -> $t {
- if *self <= *other { 0 } else { *self - *other }
- }
-
- #[inline]
- fn signum(&self) -> $t {
- match *self {
- n if n > 0 => 1,
- 0 => 0,
- _ => -1,
- }
- }
-
- #[inline]
- fn is_positive(&self) -> bool { *self > 0 }
-
- #[inline]
- fn is_negative(&self) -> bool { *self < 0 }
- }
- )*)
-}
-
-signed_impl!(isize i8 i16 i32 i64 i128);
-
-impl<T: Signed> Signed for Wrapping<T>
-where
- Wrapping<T>: Num + Neg<Output = Wrapping<T>>,
-{
- #[inline]
- fn abs(&self) -> Self {
- Wrapping(self.0.abs())
- }
-
- #[inline]
- fn abs_sub(&self, other: &Self) -> Self {
- Wrapping(self.0.abs_sub(&other.0))
- }
-
- #[inline]
- fn signum(&self) -> Self {
- Wrapping(self.0.signum())
- }
-
- #[inline]
- fn is_positive(&self) -> bool {
- self.0.is_positive()
- }
-
- #[inline]
- fn is_negative(&self) -> bool {
- self.0.is_negative()
- }
-}
-
-macro_rules! signed_float_impl {
- ($t:ty) => {
- impl Signed for $t {
- /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
- #[inline]
- fn abs(&self) -> $t {
- FloatCore::abs(*self)
- }
-
- /// The positive difference of two numbers. Returns `0.0` if the number is
- /// less than or equal to `other`, otherwise the difference between`self`
- /// and `other` is returned.
- #[inline]
- fn abs_sub(&self, other: &$t) -> $t {
- if *self <= *other {
- 0.
- } else {
- *self - *other
- }
- }
-
- /// # Returns
- ///
- /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
- /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
- /// - `NAN` if the number is NaN
- #[inline]
- fn signum(&self) -> $t {
- FloatCore::signum(*self)
- }
-
- /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
- #[inline]
- fn is_positive(&self) -> bool {
- FloatCore::is_sign_positive(*self)
- }
-
- /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
- #[inline]
- fn is_negative(&self) -> bool {
- FloatCore::is_sign_negative(*self)
- }
- }
- };
-}
-
-signed_float_impl!(f32);
-signed_float_impl!(f64);
-
-/// Computes the absolute value.
-///
-/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
-///
-/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
-#[inline(always)]
-pub fn abs<T: Signed>(value: T) -> T {
- value.abs()
-}
-
-/// The positive difference of two numbers.
-///
-/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
-/// between `x` and `y` is returned.
-#[inline(always)]
-pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
- x.abs_sub(&y)
-}
-
-/// Returns the sign of the number.
-///
-/// For `f32` and `f64`:
-///
-/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
-/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
-/// * `NaN` if the number is `NaN`
-///
-/// For signed integers:
-///
-/// * `0` if the number is zero
-/// * `1` if the number is positive
-/// * `-1` if the number is negative
-#[inline(always)]
-pub fn signum<T: Signed>(value: T) -> T {
- value.signum()
-}
-
-/// A trait for values which cannot be negative
-pub trait Unsigned: Num {}
-
-macro_rules! empty_trait_impl {
- ($name:ident for $($t:ty)*) => ($(
- impl $name for $t {}
- )*)
-}
-
-empty_trait_impl!(Unsigned for usize u8 u16 u32 u64 u128);
-
-impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {}
-
-#[test]
-fn unsigned_wrapping_is_unsigned() {
- fn require_unsigned<T: Unsigned>(_: &T) {}
- require_unsigned(&Wrapping(42_u32));
-}
-
-#[test]
-fn signed_wrapping_is_signed() {
- fn require_signed<T: Signed>(_: &T) {}
- require_signed(&Wrapping(-42));
-}