diff options
author | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
---|---|---|
committer | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
commit | e8701195e66f2d27ffe17fb514eae8173795aaf7 (patch) | |
tree | 9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/gcode/calibrate/G33.cpp | |
download | kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip |
Initial commit
Diffstat (limited to 'Marlin/src/gcode/calibrate/G33.cpp')
-rw-r--r-- | Marlin/src/gcode/calibrate/G33.cpp | 648 |
1 files changed, 648 insertions, 0 deletions
diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp new file mode 100644 index 0000000..77cc457 --- /dev/null +++ b/Marlin/src/gcode/calibrate/G33.cpp @@ -0,0 +1,648 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +#include "../../inc/MarlinConfig.h" + +#if ENABLED(DELTA_AUTO_CALIBRATION) + +#include "../gcode.h" +#include "../../module/delta.h" +#include "../../module/motion.h" +#include "../../module/stepper.h" +#include "../../module/endstops.h" +#include "../../lcd/marlinui.h" + +#if HAS_BED_PROBE + #include "../../module/probe.h" +#endif + +#if HAS_MULTI_HOTEND + #include "../../module/tool_change.h" +#endif + +#if HAS_LEVELING + #include "../../feature/bedlevel/bedlevel.h" +#endif + +constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points + _4P_STEP = _7P_STEP * 2, // 4-point step + NPP = _7P_STEP * 6; // number of calibration points on the radius +enum CalEnum : char { // the 7 main calibration points - add definitions if needed + CEN = 0, + __A = 1, + _AB = __A + _7P_STEP, + __B = _AB + _7P_STEP, + _BC = __B + _7P_STEP, + __C = _BC + _7P_STEP, + _CA = __C + _7P_STEP, +}; + +#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) +#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N) +#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N) +#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1) +#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP) +#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP) + +TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder); + +float lcd_probe_pt(const xy_pos_t &xy); + +void ac_home() { + endstops.enable(true); + home_delta(); + endstops.not_homing(); +} + +void ac_setup(const bool reset_bed) { + TERN_(HAS_MULTI_HOTEND, tool_change(0, true)); + + planner.synchronize(); + remember_feedrate_scaling_off(); + + #if HAS_LEVELING + if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid + #endif +} + +void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) { + TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height)); + TERN_(HAS_BED_PROBE, probe.stow()); + restore_feedrate_and_scaling(); + TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true)); +} + +void print_signed_float(PGM_P const prefix, const float &f) { + SERIAL_ECHOPGM(" "); + serialprintPGM(prefix); + SERIAL_CHAR(':'); + if (f >= 0) SERIAL_CHAR('+'); + SERIAL_ECHO_F(f, 2); +} + +/** + * - Print the delta settings + */ +static void print_calibration_settings(const bool end_stops, const bool tower_angles) { + SERIAL_ECHOPAIR(".Height:", delta_height); + if (end_stops) { + print_signed_float(PSTR("Ex"), delta_endstop_adj.a); + print_signed_float(PSTR("Ey"), delta_endstop_adj.b); + print_signed_float(PSTR("Ez"), delta_endstop_adj.c); + } + if (end_stops && tower_angles) { + SERIAL_ECHOPAIR(" Radius:", delta_radius); + SERIAL_EOL(); + SERIAL_CHAR('.'); + SERIAL_ECHO_SP(13); + } + if (tower_angles) { + print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a); + print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b); + print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c); + } + if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR + SERIAL_ECHOPAIR(" Radius:", delta_radius); + } + SERIAL_EOL(); +} + +/** + * - Print the probe results + */ +static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) { + SERIAL_ECHOPGM(". "); + print_signed_float(PSTR("c"), z_pt[CEN]); + if (tower_points) { + print_signed_float(PSTR(" x"), z_pt[__A]); + print_signed_float(PSTR(" y"), z_pt[__B]); + print_signed_float(PSTR(" z"), z_pt[__C]); + } + if (tower_points && opposite_points) { + SERIAL_EOL(); + SERIAL_CHAR('.'); + SERIAL_ECHO_SP(13); + } + if (opposite_points) { + print_signed_float(PSTR("yz"), z_pt[_BC]); + print_signed_float(PSTR("zx"), z_pt[_CA]); + print_signed_float(PSTR("xy"), z_pt[_AB]); + } + SERIAL_EOL(); +} + +/** + * - Calculate the standard deviation from the zero plane + */ +static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) { + if (!_0p_cal) { + float S2 = sq(z_pt[CEN]); + int16_t N = 1; + if (!_1p_cal) { // std dev from zero plane + LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) { + S2 += sq(z_pt[rad]); + N++; + } + return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f; + } + } + return 0.00001f; +} + +/** + * - Probe a point + */ +static float calibration_probe(const xy_pos_t &xy, const bool stow) { + #if HAS_BED_PROBE + return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false); + #else + UNUSED(stow); + return lcd_probe_pt(xy); + #endif +} + +/** + * - Probe a grid + */ +static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { + const bool _0p_calibration = probe_points == 0, + _1p_calibration = probe_points == 1 || probe_points == -1, + _4p_calibration = probe_points == 2, + _4p_opposite_points = _4p_calibration && !towers_set, + _7p_calibration = probe_points >= 3, + _7p_no_intermediates = probe_points == 3, + _7p_1_intermediates = probe_points == 4, + _7p_2_intermediates = probe_points == 5, + _7p_4_intermediates = probe_points == 6, + _7p_6_intermediates = probe_points == 7, + _7p_8_intermediates = probe_points == 8, + _7p_11_intermediates = probe_points == 9, + _7p_14_intermediates = probe_points == 10, + _7p_intermed_points = probe_points >= 4, + _7p_6_center = probe_points >= 5 && probe_points <= 7, + _7p_9_center = probe_points >= 8; + + LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f; + + if (!_0p_calibration) { + + const float dcr = delta_calibration_radius(); + + if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center + const xy_pos_t center{0}; + z_pt[CEN] += calibration_probe(center, stow_after_each); + if (isnan(z_pt[CEN])) return false; + } + + if (_7p_calibration) { // probe extra center points + const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C), + steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP; + I_LOOP_CAL_PT(rad, start, steps) { + const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), + r = dcr * 0.1; + const xy_pos_t vec = { cos(a), sin(a) }; + z_pt[CEN] += calibration_probe(vec * r, stow_after_each); + if (isnan(z_pt[CEN])) return false; + } + z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); + } + + if (!_1p_calibration) { // probe the radius + const CalEnum start = _4p_opposite_points ? _AB : __A; + const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100 + _7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81 + _7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64 + _7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49 + _7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36 + _7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25 + _7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16 + _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9 + _4P_STEP; // .5r * 6 + 1c = 4 + bool zig_zag = true; + F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) { + const int8_t offset = _7p_9_center ? 2 : 0; + for (int8_t circle = 0; circle <= offset; circle++) { + const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), + r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)), + interpol = FMOD(rad, 1); + const xy_pos_t vec = { cos(a), sin(a) }; + const float z_temp = calibration_probe(vec * r, stow_after_each); + if (isnan(z_temp)) return false; + // split probe point to neighbouring calibration points + z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); + z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); + } + zig_zag = !zig_zag; + } + if (_7p_intermed_points) + LOOP_CAL_RAD(rad) + z_pt[rad] /= _7P_STEP / steps; + + do_blocking_move_to_xy(0.0f, 0.0f); + } + } + return true; +} + +/** + * kinematics routines and auto tune matrix scaling parameters: + * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for + * - formulae for approximative forward kinematics in the end-stop displacement matrix + * - definition of the matrix scaling parameters + */ +static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) { + xyz_pos_t pos{0}; + + const float dcr = delta_calibration_radius(); + LOOP_CAL_ALL(rad) { + const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), + r = (rad == CEN ? 0.0f : dcr); + pos.set(cos(a) * r, sin(a) * r, z_pt[rad]); + inverse_kinematics(pos); + mm_at_pt_axis[rad] = delta; + } +} + +static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) { + const float r_quot = delta_calibration_radius() / delta_radius; + + #define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A) + #define Z00(I, A) ZPP( 0, I, A) + #define Zp1(I, A) ZPP(+1, I, A) + #define Zm1(I, A) ZPP(-1, I, A) + #define Zp2(I, A) ZPP(+2, I, A) + #define Zm2(I, A) ZPP(-2, I, A) + + z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c); + z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c); + z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c); + z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c); + z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c); + z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c); + z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c); +} + +static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) { + const float z_center = z_pt[CEN]; + abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1]; + + reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis); + + delta_radius += delta_r; + delta_tower_angle_trim += delta_t; + recalc_delta_settings(); + reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis); + + LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e; + forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt); + + LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center; + z_pt[CEN] = z_center; + + delta_radius -= delta_r; + delta_tower_angle_trim -= delta_t; + recalc_delta_settings(); +} + +static float auto_tune_h() { + const float r_quot = delta_calibration_radius() / delta_radius; + return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR +} + +static float auto_tune_r() { + constexpr float diff = 0.01f, delta_r = diff; + float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f }; + abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f }; + + calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t); + r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f; + r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z) + return r_fac; +} + +static float auto_tune_a() { + constexpr float diff = 0.01f, delta_r = 0.0f; + float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f }; + abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f }; + + delta_t.reset(); + LOOP_XYZ(axis) { + delta_t[axis] = diff; + calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t); + delta_t[axis] = 0; + a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f; + a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f; + } + a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z) + return a_fac; +} + +/** + * G33 - Delta '1-4-7-point' Auto-Calibration + * Calibrate height, z_offset, endstops, delta radius, and tower angles. + * + * Parameters: + * + * Pn Number of probe points: + * P0 Normalizes calibration. + * P1 Calibrates height only with center probe. + * P2 Probe center and towers. Calibrate height, endstops and delta radius. + * P3 Probe all positions: center, towers and opposite towers. Calibrate all. + * P4-P10 Probe all positions at different intermediate locations and average them. + * + * T Don't calibrate tower angle corrections + * + * Cn.nn Calibration precision; when omitted calibrates to maximum precision + * + * Fn Force to run at least n iterations and take the best result + * + * Vn Verbose level: + * V0 Dry-run mode. Report settings and probe results. No calibration. + * V1 Report start and end settings only + * V2 Report settings at each iteration + * V3 Report settings and probe results + * + * E Engage the probe for each point + */ +void GcodeSuite::G33() { + + const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); + if (!WITHIN(probe_points, 0, 10)) { + SERIAL_ECHOLNPGM("?(P)oints implausible (0-10)."); + return; + } + + const bool towers_set = !parser.seen('T'); + + const float calibration_precision = parser.floatval('C', 0.0f); + if (calibration_precision < 0) { + SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0)."); + return; + } + + const int8_t force_iterations = parser.intval('F', 0); + if (!WITHIN(force_iterations, 0, 30)) { + SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30)."); + return; + } + + const int8_t verbose_level = parser.byteval('V', 1); + if (!WITHIN(verbose_level, 0, 3)) { + SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3)."); + return; + } + + const bool stow_after_each = parser.seen('E'); + + const bool _0p_calibration = probe_points == 0, + _1p_calibration = probe_points == 1 || probe_points == -1, + _4p_calibration = probe_points == 2, + _4p_opposite_points = _4p_calibration && !towers_set, + _7p_9_center = probe_points >= 8, + _tower_results = (_4p_calibration && towers_set) || probe_points >= 3, + _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3, + _endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0, + _angle_results = probe_points >= 3 && towers_set; + int8_t iterations = 0; + float test_precision, + zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end + zero_std_dev_min = zero_std_dev, + zero_std_dev_old = zero_std_dev, + h_factor, r_factor, a_factor, + r_old = delta_radius, + h_old = delta_height; + + abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim; + + SERIAL_ECHOLNPGM("G33 Auto Calibrate"); + + const float dcr = delta_calibration_radius(); + + if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable + LOOP_CAL_RAD(axis) { + const float a = RADIANS(210 + (360 / NPP) * (axis - 1)); + if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) { + SERIAL_ECHOLNPGM("?Bed calibration radius implausible."); + return; + } + } + } + + // Report settings + PGM_P const checkingac = PSTR("Checking... AC"); + serialprintPGM(checkingac); + if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)"); + SERIAL_EOL(); + ui.set_status_P(checkingac); + + print_calibration_settings(_endstop_results, _angle_results); + + ac_setup(!_0p_calibration && !_1p_calibration); + + if (!_0p_calibration) ac_home(); + + do { // start iterations + + float z_at_pt[NPP + 1] = { 0.0f }; + + test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev; + iterations++; + + // Probe the points + zero_std_dev_old = zero_std_dev; + if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) { + SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666"); + return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index)); + } + zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points); + + // Solve matrices + + if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) { + + #if !HAS_BED_PROBE + test_precision = 0.0f; // forced end + #endif + + if (zero_std_dev < zero_std_dev_min) { + // set roll-back point + e_old = delta_endstop_adj; + r_old = delta_radius; + h_old = delta_height; + a_old = delta_tower_angle_trim; + } + + abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f }; + float r_delta = 0.0f; + + /** + * convergence matrices: + * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for + * - definition of the matrix scaling parameters + * - matrices for 4 and 7 point calibration + */ + #define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers + #define Z12(I) ZP(12, I) + #define Z4(I) ZP(4, I) + #define Z2(I) ZP(2, I) + #define Z1(I) ZP(1, I) + #define Z0(I) ZP(0, I) + + // calculate factors + if (_7p_9_center) calibration_radius_factor = 0.9f; + h_factor = auto_tune_h(); + r_factor = auto_tune_r(); + a_factor = auto_tune_a(); + calibration_radius_factor = 1.0f; + + switch (probe_points) { + case 0: + test_precision = 0.0f; // forced end + break; + + case 1: + test_precision = 0.0f; // forced end + LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN); + break; + + case 2: + if (towers_set) { // see 4 point calibration (towers) matrix + e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN), + (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN), + (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN)); + r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor; + } + else { // see 4 point calibration (opposites) matrix + e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN), + (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN), + (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN)); + r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor; + } + break; + + default: // see 7 point calibration (towers & opposites) matrix + e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN), + (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN), + (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN)); + r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor; + + if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix + t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor, + (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor, + (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor); + } + break; + } + delta_endstop_adj += e_delta; + delta_radius += r_delta; + delta_tower_angle_trim += t_delta; + } + else if (zero_std_dev >= test_precision) { + // roll back + delta_endstop_adj = e_old; + delta_radius = r_old; + delta_height = h_old; + delta_tower_angle_trim = a_old; + } + + if (verbose_level != 0) { // !dry run + + // Normalize angles to least-squares + if (_angle_results) { + float a_sum = 0.0f; + LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; + LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f; + } + + // adjust delta_height and endstops by the max amount + const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c); + delta_height -= z_temp; + LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; + } + recalc_delta_settings(); + NOMORE(zero_std_dev_min, zero_std_dev); + + // print report + + if (verbose_level == 3) + print_calibration_results(z_at_pt, _tower_results, _opposite_results); + + if (verbose_level != 0) { // !dry run + if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations + SERIAL_ECHOPGM("Calibration OK"); + SERIAL_ECHO_SP(32); + #if HAS_BED_PROBE + if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration) + SERIAL_ECHOPGM("rolling back."); + else + #endif + { + SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3); + } + SERIAL_EOL(); + char mess[21]; + strcpy_P(mess, PSTR("Calibration sd:")); + if (zero_std_dev_min < 1) + sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f)); + else + sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min)); + ui.set_status(mess); + print_calibration_settings(_endstop_results, _angle_results); + SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h"); + } + else { // !end iterations + char mess[15]; + if (iterations < 31) + sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations); + else + strcpy_P(mess, PSTR("No convergence")); + SERIAL_ECHO(mess); + SERIAL_ECHO_SP(32); + SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3); + ui.set_status(mess); + if (verbose_level > 1) + print_calibration_settings(_endstop_results, _angle_results); + } + } + else { // dry run + PGM_P const enddryrun = PSTR("End DRY-RUN"); + serialprintPGM(enddryrun); + SERIAL_ECHO_SP(35); + SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3); + + char mess[21]; + strcpy_P(mess, enddryrun); + strcpy_P(&mess[11], PSTR(" sd:")); + if (zero_std_dev < 1) + sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f)); + else + sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev)); + ui.set_status(mess); + } + ac_home(); + } + while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision); + + ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index)); +} + +#endif // DELTA_AUTO_CALIBRATION |