aboutsummaryrefslogtreecommitdiff
path: root/Marlin/src/gcode/calibrate/G33.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Marlin/src/gcode/calibrate/G33.cpp')
-rw-r--r--Marlin/src/gcode/calibrate/G33.cpp648
1 files changed, 648 insertions, 0 deletions
diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp
new file mode 100644
index 0000000..77cc457
--- /dev/null
+++ b/Marlin/src/gcode/calibrate/G33.cpp
@@ -0,0 +1,648 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "../../inc/MarlinConfig.h"
+
+#if ENABLED(DELTA_AUTO_CALIBRATION)
+
+#include "../gcode.h"
+#include "../../module/delta.h"
+#include "../../module/motion.h"
+#include "../../module/stepper.h"
+#include "../../module/endstops.h"
+#include "../../lcd/marlinui.h"
+
+#if HAS_BED_PROBE
+ #include "../../module/probe.h"
+#endif
+
+#if HAS_MULTI_HOTEND
+ #include "../../module/tool_change.h"
+#endif
+
+#if HAS_LEVELING
+ #include "../../feature/bedlevel/bedlevel.h"
+#endif
+
+constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
+ _4P_STEP = _7P_STEP * 2, // 4-point step
+ NPP = _7P_STEP * 6; // number of calibration points on the radius
+enum CalEnum : char { // the 7 main calibration points - add definitions if needed
+ CEN = 0,
+ __A = 1,
+ _AB = __A + _7P_STEP,
+ __B = _AB + _7P_STEP,
+ _BC = __B + _7P_STEP,
+ __C = _BC + _7P_STEP,
+ _CA = __C + _7P_STEP,
+};
+
+#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
+#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
+#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
+#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
+#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
+#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
+
+TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder);
+
+float lcd_probe_pt(const xy_pos_t &xy);
+
+void ac_home() {
+ endstops.enable(true);
+ home_delta();
+ endstops.not_homing();
+}
+
+void ac_setup(const bool reset_bed) {
+ TERN_(HAS_MULTI_HOTEND, tool_change(0, true));
+
+ planner.synchronize();
+ remember_feedrate_scaling_off();
+
+ #if HAS_LEVELING
+ if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
+ #endif
+}
+
+void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) {
+ TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
+ TERN_(HAS_BED_PROBE, probe.stow());
+ restore_feedrate_and_scaling();
+ TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true));
+}
+
+void print_signed_float(PGM_P const prefix, const float &f) {
+ SERIAL_ECHOPGM(" ");
+ serialprintPGM(prefix);
+ SERIAL_CHAR(':');
+ if (f >= 0) SERIAL_CHAR('+');
+ SERIAL_ECHO_F(f, 2);
+}
+
+/**
+ * - Print the delta settings
+ */
+static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
+ SERIAL_ECHOPAIR(".Height:", delta_height);
+ if (end_stops) {
+ print_signed_float(PSTR("Ex"), delta_endstop_adj.a);
+ print_signed_float(PSTR("Ey"), delta_endstop_adj.b);
+ print_signed_float(PSTR("Ez"), delta_endstop_adj.c);
+ }
+ if (end_stops && tower_angles) {
+ SERIAL_ECHOPAIR(" Radius:", delta_radius);
+ SERIAL_EOL();
+ SERIAL_CHAR('.');
+ SERIAL_ECHO_SP(13);
+ }
+ if (tower_angles) {
+ print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a);
+ print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b);
+ print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c);
+ }
+ if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
+ SERIAL_ECHOPAIR(" Radius:", delta_radius);
+ }
+ SERIAL_EOL();
+}
+
+/**
+ * - Print the probe results
+ */
+static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
+ SERIAL_ECHOPGM(". ");
+ print_signed_float(PSTR("c"), z_pt[CEN]);
+ if (tower_points) {
+ print_signed_float(PSTR(" x"), z_pt[__A]);
+ print_signed_float(PSTR(" y"), z_pt[__B]);
+ print_signed_float(PSTR(" z"), z_pt[__C]);
+ }
+ if (tower_points && opposite_points) {
+ SERIAL_EOL();
+ SERIAL_CHAR('.');
+ SERIAL_ECHO_SP(13);
+ }
+ if (opposite_points) {
+ print_signed_float(PSTR("yz"), z_pt[_BC]);
+ print_signed_float(PSTR("zx"), z_pt[_CA]);
+ print_signed_float(PSTR("xy"), z_pt[_AB]);
+ }
+ SERIAL_EOL();
+}
+
+/**
+ * - Calculate the standard deviation from the zero plane
+ */
+static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
+ if (!_0p_cal) {
+ float S2 = sq(z_pt[CEN]);
+ int16_t N = 1;
+ if (!_1p_cal) { // std dev from zero plane
+ LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
+ S2 += sq(z_pt[rad]);
+ N++;
+ }
+ return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
+ }
+ }
+ return 0.00001f;
+}
+
+/**
+ * - Probe a point
+ */
+static float calibration_probe(const xy_pos_t &xy, const bool stow) {
+ #if HAS_BED_PROBE
+ return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false);
+ #else
+ UNUSED(stow);
+ return lcd_probe_pt(xy);
+ #endif
+}
+
+/**
+ * - Probe a grid
+ */
+static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
+ const bool _0p_calibration = probe_points == 0,
+ _1p_calibration = probe_points == 1 || probe_points == -1,
+ _4p_calibration = probe_points == 2,
+ _4p_opposite_points = _4p_calibration && !towers_set,
+ _7p_calibration = probe_points >= 3,
+ _7p_no_intermediates = probe_points == 3,
+ _7p_1_intermediates = probe_points == 4,
+ _7p_2_intermediates = probe_points == 5,
+ _7p_4_intermediates = probe_points == 6,
+ _7p_6_intermediates = probe_points == 7,
+ _7p_8_intermediates = probe_points == 8,
+ _7p_11_intermediates = probe_points == 9,
+ _7p_14_intermediates = probe_points == 10,
+ _7p_intermed_points = probe_points >= 4,
+ _7p_6_center = probe_points >= 5 && probe_points <= 7,
+ _7p_9_center = probe_points >= 8;
+
+ LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f;
+
+ if (!_0p_calibration) {
+
+ const float dcr = delta_calibration_radius();
+
+ if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
+ const xy_pos_t center{0};
+ z_pt[CEN] += calibration_probe(center, stow_after_each);
+ if (isnan(z_pt[CEN])) return false;
+ }
+
+ if (_7p_calibration) { // probe extra center points
+ const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C),
+ steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP;
+ I_LOOP_CAL_PT(rad, start, steps) {
+ const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
+ r = dcr * 0.1;
+ const xy_pos_t vec = { cos(a), sin(a) };
+ z_pt[CEN] += calibration_probe(vec * r, stow_after_each);
+ if (isnan(z_pt[CEN])) return false;
+ }
+ z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
+ }
+
+ if (!_1p_calibration) { // probe the radius
+ const CalEnum start = _4p_opposite_points ? _AB : __A;
+ const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100
+ _7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81
+ _7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64
+ _7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49
+ _7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36
+ _7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25
+ _7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16
+ _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
+ _4P_STEP; // .5r * 6 + 1c = 4
+ bool zig_zag = true;
+ F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
+ const int8_t offset = _7p_9_center ? 2 : 0;
+ for (int8_t circle = 0; circle <= offset; circle++) {
+ const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
+ r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
+ interpol = FMOD(rad, 1);
+ const xy_pos_t vec = { cos(a), sin(a) };
+ const float z_temp = calibration_probe(vec * r, stow_after_each);
+ if (isnan(z_temp)) return false;
+ // split probe point to neighbouring calibration points
+ z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
+ z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
+ }
+ zig_zag = !zig_zag;
+ }
+ if (_7p_intermed_points)
+ LOOP_CAL_RAD(rad)
+ z_pt[rad] /= _7P_STEP / steps;
+
+ do_blocking_move_to_xy(0.0f, 0.0f);
+ }
+ }
+ return true;
+}
+
+/**
+ * kinematics routines and auto tune matrix scaling parameters:
+ * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
+ * - formulae for approximative forward kinematics in the end-stop displacement matrix
+ * - definition of the matrix scaling parameters
+ */
+static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) {
+ xyz_pos_t pos{0};
+
+ const float dcr = delta_calibration_radius();
+ LOOP_CAL_ALL(rad) {
+ const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
+ r = (rad == CEN ? 0.0f : dcr);
+ pos.set(cos(a) * r, sin(a) * r, z_pt[rad]);
+ inverse_kinematics(pos);
+ mm_at_pt_axis[rad] = delta;
+ }
+}
+
+static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) {
+ const float r_quot = delta_calibration_radius() / delta_radius;
+
+ #define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A)
+ #define Z00(I, A) ZPP( 0, I, A)
+ #define Zp1(I, A) ZPP(+1, I, A)
+ #define Zm1(I, A) ZPP(-1, I, A)
+ #define Zp2(I, A) ZPP(+2, I, A)
+ #define Zm2(I, A) ZPP(-2, I, A)
+
+ z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c);
+ z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c);
+ z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c);
+ z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c);
+ z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c);
+ z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c);
+ z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c);
+}
+
+static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) {
+ const float z_center = z_pt[CEN];
+ abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1];
+
+ reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
+
+ delta_radius += delta_r;
+ delta_tower_angle_trim += delta_t;
+ recalc_delta_settings();
+ reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
+
+ LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e;
+ forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
+
+ LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
+ z_pt[CEN] = z_center;
+
+ delta_radius -= delta_r;
+ delta_tower_angle_trim -= delta_t;
+ recalc_delta_settings();
+}
+
+static float auto_tune_h() {
+ const float r_quot = delta_calibration_radius() / delta_radius;
+ return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
+}
+
+static float auto_tune_r() {
+ constexpr float diff = 0.01f, delta_r = diff;
+ float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
+ abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
+
+ calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
+ r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f;
+ r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z)
+ return r_fac;
+}
+
+static float auto_tune_a() {
+ constexpr float diff = 0.01f, delta_r = 0.0f;
+ float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
+ abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
+
+ delta_t.reset();
+ LOOP_XYZ(axis) {
+ delta_t[axis] = diff;
+ calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
+ delta_t[axis] = 0;
+ a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f;
+ a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f;
+ }
+ a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z)
+ return a_fac;
+}
+
+/**
+ * G33 - Delta '1-4-7-point' Auto-Calibration
+ * Calibrate height, z_offset, endstops, delta radius, and tower angles.
+ *
+ * Parameters:
+ *
+ * Pn Number of probe points:
+ * P0 Normalizes calibration.
+ * P1 Calibrates height only with center probe.
+ * P2 Probe center and towers. Calibrate height, endstops and delta radius.
+ * P3 Probe all positions: center, towers and opposite towers. Calibrate all.
+ * P4-P10 Probe all positions at different intermediate locations and average them.
+ *
+ * T Don't calibrate tower angle corrections
+ *
+ * Cn.nn Calibration precision; when omitted calibrates to maximum precision
+ *
+ * Fn Force to run at least n iterations and take the best result
+ *
+ * Vn Verbose level:
+ * V0 Dry-run mode. Report settings and probe results. No calibration.
+ * V1 Report start and end settings only
+ * V2 Report settings at each iteration
+ * V3 Report settings and probe results
+ *
+ * E Engage the probe for each point
+ */
+void GcodeSuite::G33() {
+
+ const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
+ if (!WITHIN(probe_points, 0, 10)) {
+ SERIAL_ECHOLNPGM("?(P)oints implausible (0-10).");
+ return;
+ }
+
+ const bool towers_set = !parser.seen('T');
+
+ const float calibration_precision = parser.floatval('C', 0.0f);
+ if (calibration_precision < 0) {
+ SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0).");
+ return;
+ }
+
+ const int8_t force_iterations = parser.intval('F', 0);
+ if (!WITHIN(force_iterations, 0, 30)) {
+ SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30).");
+ return;
+ }
+
+ const int8_t verbose_level = parser.byteval('V', 1);
+ if (!WITHIN(verbose_level, 0, 3)) {
+ SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3).");
+ return;
+ }
+
+ const bool stow_after_each = parser.seen('E');
+
+ const bool _0p_calibration = probe_points == 0,
+ _1p_calibration = probe_points == 1 || probe_points == -1,
+ _4p_calibration = probe_points == 2,
+ _4p_opposite_points = _4p_calibration && !towers_set,
+ _7p_9_center = probe_points >= 8,
+ _tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
+ _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
+ _endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
+ _angle_results = probe_points >= 3 && towers_set;
+ int8_t iterations = 0;
+ float test_precision,
+ zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end
+ zero_std_dev_min = zero_std_dev,
+ zero_std_dev_old = zero_std_dev,
+ h_factor, r_factor, a_factor,
+ r_old = delta_radius,
+ h_old = delta_height;
+
+ abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim;
+
+ SERIAL_ECHOLNPGM("G33 Auto Calibrate");
+
+ const float dcr = delta_calibration_radius();
+
+ if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
+ LOOP_CAL_RAD(axis) {
+ const float a = RADIANS(210 + (360 / NPP) * (axis - 1));
+ if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) {
+ SERIAL_ECHOLNPGM("?Bed calibration radius implausible.");
+ return;
+ }
+ }
+ }
+
+ // Report settings
+ PGM_P const checkingac = PSTR("Checking... AC");
+ serialprintPGM(checkingac);
+ if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
+ SERIAL_EOL();
+ ui.set_status_P(checkingac);
+
+ print_calibration_settings(_endstop_results, _angle_results);
+
+ ac_setup(!_0p_calibration && !_1p_calibration);
+
+ if (!_0p_calibration) ac_home();
+
+ do { // start iterations
+
+ float z_at_pt[NPP + 1] = { 0.0f };
+
+ test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
+ iterations++;
+
+ // Probe the points
+ zero_std_dev_old = zero_std_dev;
+ if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
+ SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
+ return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
+ }
+ zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
+
+ // Solve matrices
+
+ if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
+
+ #if !HAS_BED_PROBE
+ test_precision = 0.0f; // forced end
+ #endif
+
+ if (zero_std_dev < zero_std_dev_min) {
+ // set roll-back point
+ e_old = delta_endstop_adj;
+ r_old = delta_radius;
+ h_old = delta_height;
+ a_old = delta_tower_angle_trim;
+ }
+
+ abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f };
+ float r_delta = 0.0f;
+
+ /**
+ * convergence matrices:
+ * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
+ * - definition of the matrix scaling parameters
+ * - matrices for 4 and 7 point calibration
+ */
+ #define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
+ #define Z12(I) ZP(12, I)
+ #define Z4(I) ZP(4, I)
+ #define Z2(I) ZP(2, I)
+ #define Z1(I) ZP(1, I)
+ #define Z0(I) ZP(0, I)
+
+ // calculate factors
+ if (_7p_9_center) calibration_radius_factor = 0.9f;
+ h_factor = auto_tune_h();
+ r_factor = auto_tune_r();
+ a_factor = auto_tune_a();
+ calibration_radius_factor = 1.0f;
+
+ switch (probe_points) {
+ case 0:
+ test_precision = 0.0f; // forced end
+ break;
+
+ case 1:
+ test_precision = 0.0f; // forced end
+ LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
+ break;
+
+ case 2:
+ if (towers_set) { // see 4 point calibration (towers) matrix
+ e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN),
+ (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN),
+ (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN));
+ r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
+ }
+ else { // see 4 point calibration (opposites) matrix
+ e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
+ (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
+ (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN));
+ r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
+ }
+ break;
+
+ default: // see 7 point calibration (towers & opposites) matrix
+ e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
+ (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
+ (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN));
+ r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
+
+ if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
+ t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor,
+ (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor,
+ (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor);
+ }
+ break;
+ }
+ delta_endstop_adj += e_delta;
+ delta_radius += r_delta;
+ delta_tower_angle_trim += t_delta;
+ }
+ else if (zero_std_dev >= test_precision) {
+ // roll back
+ delta_endstop_adj = e_old;
+ delta_radius = r_old;
+ delta_height = h_old;
+ delta_tower_angle_trim = a_old;
+ }
+
+ if (verbose_level != 0) { // !dry run
+
+ // Normalize angles to least-squares
+ if (_angle_results) {
+ float a_sum = 0.0f;
+ LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
+ LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
+ }
+
+ // adjust delta_height and endstops by the max amount
+ const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
+ delta_height -= z_temp;
+ LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
+ }
+ recalc_delta_settings();
+ NOMORE(zero_std_dev_min, zero_std_dev);
+
+ // print report
+
+ if (verbose_level == 3)
+ print_calibration_results(z_at_pt, _tower_results, _opposite_results);
+
+ if (verbose_level != 0) { // !dry run
+ if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
+ SERIAL_ECHOPGM("Calibration OK");
+ SERIAL_ECHO_SP(32);
+ #if HAS_BED_PROBE
+ if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
+ SERIAL_ECHOPGM("rolling back.");
+ else
+ #endif
+ {
+ SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
+ }
+ SERIAL_EOL();
+ char mess[21];
+ strcpy_P(mess, PSTR("Calibration sd:"));
+ if (zero_std_dev_min < 1)
+ sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f));
+ else
+ sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
+ ui.set_status(mess);
+ print_calibration_settings(_endstop_results, _angle_results);
+ SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h");
+ }
+ else { // !end iterations
+ char mess[15];
+ if (iterations < 31)
+ sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations);
+ else
+ strcpy_P(mess, PSTR("No convergence"));
+ SERIAL_ECHO(mess);
+ SERIAL_ECHO_SP(32);
+ SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
+ ui.set_status(mess);
+ if (verbose_level > 1)
+ print_calibration_settings(_endstop_results, _angle_results);
+ }
+ }
+ else { // dry run
+ PGM_P const enddryrun = PSTR("End DRY-RUN");
+ serialprintPGM(enddryrun);
+ SERIAL_ECHO_SP(35);
+ SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
+
+ char mess[21];
+ strcpy_P(mess, enddryrun);
+ strcpy_P(&mess[11], PSTR(" sd:"));
+ if (zero_std_dev < 1)
+ sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f));
+ else
+ sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
+ ui.set_status(mess);
+ }
+ ac_home();
+ }
+ while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
+
+ ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
+}
+
+#endif // DELTA_AUTO_CALIBRATION