diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/num-traits/src | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/num-traits/src')
-rw-r--r-- | vendor/num-traits/src/bounds.rs | 148 | ||||
-rw-r--r-- | vendor/num-traits/src/cast.rs | 778 | ||||
-rw-r--r-- | vendor/num-traits/src/float.rs | 2344 | ||||
-rw-r--r-- | vendor/num-traits/src/identities.rs | 202 | ||||
-rw-r--r-- | vendor/num-traits/src/int.rs | 565 | ||||
-rw-r--r-- | vendor/num-traits/src/lib.rs | 635 | ||||
-rw-r--r-- | vendor/num-traits/src/macros.rs | 44 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/bytes.rs | 403 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/checked.rs | 261 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/euclid.rs | 339 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/inv.rs | 47 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/mod.rs | 8 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/mul_add.rs | 149 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/overflowing.rs | 96 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/saturating.rs | 130 | ||||
-rw-r--r-- | vendor/num-traits/src/ops/wrapping.rs | 327 | ||||
-rw-r--r-- | vendor/num-traits/src/pow.rs | 242 | ||||
-rw-r--r-- | vendor/num-traits/src/real.rs | 834 | ||||
-rw-r--r-- | vendor/num-traits/src/sign.rs | 216 |
19 files changed, 0 insertions, 7768 deletions
diff --git a/vendor/num-traits/src/bounds.rs b/vendor/num-traits/src/bounds.rs deleted file mode 100644 index acc990e..0000000 --- a/vendor/num-traits/src/bounds.rs +++ /dev/null @@ -1,148 +0,0 @@ -use core::num::Wrapping; -use core::{f32, f64}; -use core::{i128, i16, i32, i64, i8, isize}; -use core::{u128, u16, u32, u64, u8, usize}; - -/// Numbers which have upper and lower bounds -pub trait Bounded { - // FIXME (#5527): These should be associated constants - /// Returns the smallest finite number this type can represent - fn min_value() -> Self; - /// Returns the largest finite number this type can represent - fn max_value() -> Self; -} - -/// Numbers which have lower bounds -pub trait LowerBounded { - /// Returns the smallest finite number this type can represent - fn min_value() -> Self; -} - -// FIXME: With a major version bump, this should be a supertrait instead -impl<T: Bounded> LowerBounded for T { - fn min_value() -> T { - Bounded::min_value() - } -} - -/// Numbers which have upper bounds -pub trait UpperBounded { - /// Returns the largest finite number this type can represent - fn max_value() -> Self; -} - -// FIXME: With a major version bump, this should be a supertrait instead -impl<T: Bounded> UpperBounded for T { - fn max_value() -> T { - Bounded::max_value() - } -} - -macro_rules! bounded_impl { - ($t:ty, $min:expr, $max:expr) => { - impl Bounded for $t { - #[inline] - fn min_value() -> $t { - $min - } - - #[inline] - fn max_value() -> $t { - $max - } - } - }; -} - -bounded_impl!(usize, usize::MIN, usize::MAX); -bounded_impl!(u8, u8::MIN, u8::MAX); -bounded_impl!(u16, u16::MIN, u16::MAX); -bounded_impl!(u32, u32::MIN, u32::MAX); -bounded_impl!(u64, u64::MIN, u64::MAX); -bounded_impl!(u128, u128::MIN, u128::MAX); - -bounded_impl!(isize, isize::MIN, isize::MAX); -bounded_impl!(i8, i8::MIN, i8::MAX); -bounded_impl!(i16, i16::MIN, i16::MAX); -bounded_impl!(i32, i32::MIN, i32::MAX); -bounded_impl!(i64, i64::MIN, i64::MAX); -bounded_impl!(i128, i128::MIN, i128::MAX); - -impl<T: Bounded> Bounded for Wrapping<T> { - fn min_value() -> Self { - Wrapping(T::min_value()) - } - fn max_value() -> Self { - Wrapping(T::max_value()) - } -} - -bounded_impl!(f32, f32::MIN, f32::MAX); - -macro_rules! for_each_tuple_ { - ( $m:ident !! ) => ( - $m! { } - ); - ( $m:ident !! $h:ident, $($t:ident,)* ) => ( - $m! { $h $($t)* } - for_each_tuple_! { $m !! $($t,)* } - ); -} -macro_rules! for_each_tuple { - ($m:ident) => { - for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, } - }; -} - -macro_rules! bounded_tuple { - ( $($name:ident)* ) => ( - impl<$($name: Bounded,)*> Bounded for ($($name,)*) { - #[inline] - fn min_value() -> Self { - ($($name::min_value(),)*) - } - #[inline] - fn max_value() -> Self { - ($($name::max_value(),)*) - } - } - ); -} - -for_each_tuple!(bounded_tuple); -bounded_impl!(f64, f64::MIN, f64::MAX); - -#[test] -fn wrapping_bounded() { - macro_rules! test_wrapping_bounded { - ($($t:ty)+) => { - $( - assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value()); - assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value()); - )+ - }; - } - - test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); -} - -#[test] -fn wrapping_bounded_i128() { - macro_rules! test_wrapping_bounded { - ($($t:ty)+) => { - $( - assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value()); - assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value()); - )+ - }; - } - - test_wrapping_bounded!(u128 i128); -} - -#[test] -fn wrapping_is_bounded() { - fn require_bounded<T: Bounded>(_: &T) {} - require_bounded(&Wrapping(42_u32)); - require_bounded(&Wrapping(-42)); -} diff --git a/vendor/num-traits/src/cast.rs b/vendor/num-traits/src/cast.rs deleted file mode 100644 index 125e2e3..0000000 --- a/vendor/num-traits/src/cast.rs +++ /dev/null @@ -1,778 +0,0 @@ -use core::mem::size_of; -use core::num::Wrapping; -use core::{f32, f64}; -use core::{i128, i16, i32, i64, i8, isize}; -use core::{u128, u16, u32, u64, u8, usize}; - -/// A generic trait for converting a value to a number. -/// -/// A value can be represented by the target type when it lies within -/// the range of scalars supported by the target type. -/// For example, a negative integer cannot be represented by an unsigned -/// integer type, and an `i64` with a very high magnitude might not be -/// convertible to an `i32`. -/// On the other hand, conversions with possible precision loss or truncation -/// are admitted, like an `f32` with a decimal part to an integer type, or -/// even a large `f64` saturating to `f32` infinity. -pub trait ToPrimitive { - /// Converts the value of `self` to an `isize`. If the value cannot be - /// represented by an `isize`, then `None` is returned. - #[inline] - fn to_isize(&self) -> Option<isize> { - self.to_i64().as_ref().and_then(ToPrimitive::to_isize) - } - - /// Converts the value of `self` to an `i8`. If the value cannot be - /// represented by an `i8`, then `None` is returned. - #[inline] - fn to_i8(&self) -> Option<i8> { - self.to_i64().as_ref().and_then(ToPrimitive::to_i8) - } - - /// Converts the value of `self` to an `i16`. If the value cannot be - /// represented by an `i16`, then `None` is returned. - #[inline] - fn to_i16(&self) -> Option<i16> { - self.to_i64().as_ref().and_then(ToPrimitive::to_i16) - } - - /// Converts the value of `self` to an `i32`. If the value cannot be - /// represented by an `i32`, then `None` is returned. - #[inline] - fn to_i32(&self) -> Option<i32> { - self.to_i64().as_ref().and_then(ToPrimitive::to_i32) - } - - /// Converts the value of `self` to an `i64`. If the value cannot be - /// represented by an `i64`, then `None` is returned. - fn to_i64(&self) -> Option<i64>; - - /// Converts the value of `self` to an `i128`. If the value cannot be - /// represented by an `i128` (`i64` under the default implementation), then - /// `None` is returned. - /// - /// The default implementation converts through `to_i64()`. Types implementing - /// this trait should override this method if they can represent a greater range. - #[inline] - fn to_i128(&self) -> Option<i128> { - self.to_i64().map(From::from) - } - - /// Converts the value of `self` to a `usize`. If the value cannot be - /// represented by a `usize`, then `None` is returned. - #[inline] - fn to_usize(&self) -> Option<usize> { - self.to_u64().as_ref().and_then(ToPrimitive::to_usize) - } - - /// Converts the value of `self` to a `u8`. If the value cannot be - /// represented by a `u8`, then `None` is returned. - #[inline] - fn to_u8(&self) -> Option<u8> { - self.to_u64().as_ref().and_then(ToPrimitive::to_u8) - } - - /// Converts the value of `self` to a `u16`. If the value cannot be - /// represented by a `u16`, then `None` is returned. - #[inline] - fn to_u16(&self) -> Option<u16> { - self.to_u64().as_ref().and_then(ToPrimitive::to_u16) - } - - /// Converts the value of `self` to a `u32`. If the value cannot be - /// represented by a `u32`, then `None` is returned. - #[inline] - fn to_u32(&self) -> Option<u32> { - self.to_u64().as_ref().and_then(ToPrimitive::to_u32) - } - - /// Converts the value of `self` to a `u64`. If the value cannot be - /// represented by a `u64`, then `None` is returned. - fn to_u64(&self) -> Option<u64>; - - /// Converts the value of `self` to a `u128`. If the value cannot be - /// represented by a `u128` (`u64` under the default implementation), then - /// `None` is returned. - /// - /// The default implementation converts through `to_u64()`. Types implementing - /// this trait should override this method if they can represent a greater range. - #[inline] - fn to_u128(&self) -> Option<u128> { - self.to_u64().map(From::from) - } - - /// Converts the value of `self` to an `f32`. Overflows may map to positive - /// or negative inifinity, otherwise `None` is returned if the value cannot - /// be represented by an `f32`. - #[inline] - fn to_f32(&self) -> Option<f32> { - self.to_f64().as_ref().and_then(ToPrimitive::to_f32) - } - - /// Converts the value of `self` to an `f64`. Overflows may map to positive - /// or negative inifinity, otherwise `None` is returned if the value cannot - /// be represented by an `f64`. - /// - /// The default implementation tries to convert through `to_i64()`, and - /// failing that through `to_u64()`. Types implementing this trait should - /// override this method if they can represent a greater range. - #[inline] - fn to_f64(&self) -> Option<f64> { - match self.to_i64() { - Some(i) => i.to_f64(), - None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64), - } - } -} - -macro_rules! impl_to_primitive_int_to_int { - ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$DstT> { - let min = $DstT::MIN as $SrcT; - let max = $DstT::MAX as $SrcT; - if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) { - Some(*self as $DstT) - } else { - None - } - } - )*} -} - -macro_rules! impl_to_primitive_int_to_uint { - ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$DstT> { - let max = $DstT::MAX as $SrcT; - if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) { - Some(*self as $DstT) - } else { - None - } - } - )*} -} - -macro_rules! impl_to_primitive_int { - ($T:ident) => { - impl ToPrimitive for $T { - impl_to_primitive_int_to_int! { $T: - fn to_isize -> isize; - fn to_i8 -> i8; - fn to_i16 -> i16; - fn to_i32 -> i32; - fn to_i64 -> i64; - fn to_i128 -> i128; - } - - impl_to_primitive_int_to_uint! { $T: - fn to_usize -> usize; - fn to_u8 -> u8; - fn to_u16 -> u16; - fn to_u32 -> u32; - fn to_u64 -> u64; - fn to_u128 -> u128; - } - - #[inline] - fn to_f32(&self) -> Option<f32> { - Some(*self as f32) - } - #[inline] - fn to_f64(&self) -> Option<f64> { - Some(*self as f64) - } - } - }; -} - -impl_to_primitive_int!(isize); -impl_to_primitive_int!(i8); -impl_to_primitive_int!(i16); -impl_to_primitive_int!(i32); -impl_to_primitive_int!(i64); -impl_to_primitive_int!(i128); - -macro_rules! impl_to_primitive_uint_to_int { - ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$DstT> { - let max = $DstT::MAX as $SrcT; - if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max { - Some(*self as $DstT) - } else { - None - } - } - )*} -} - -macro_rules! impl_to_primitive_uint_to_uint { - ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$DstT> { - let max = $DstT::MAX as $SrcT; - if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max { - Some(*self as $DstT) - } else { - None - } - } - )*} -} - -macro_rules! impl_to_primitive_uint { - ($T:ident) => { - impl ToPrimitive for $T { - impl_to_primitive_uint_to_int! { $T: - fn to_isize -> isize; - fn to_i8 -> i8; - fn to_i16 -> i16; - fn to_i32 -> i32; - fn to_i64 -> i64; - fn to_i128 -> i128; - } - - impl_to_primitive_uint_to_uint! { $T: - fn to_usize -> usize; - fn to_u8 -> u8; - fn to_u16 -> u16; - fn to_u32 -> u32; - fn to_u64 -> u64; - fn to_u128 -> u128; - } - - #[inline] - fn to_f32(&self) -> Option<f32> { - Some(*self as f32) - } - #[inline] - fn to_f64(&self) -> Option<f64> { - Some(*self as f64) - } - } - }; -} - -impl_to_primitive_uint!(usize); -impl_to_primitive_uint!(u8); -impl_to_primitive_uint!(u16); -impl_to_primitive_uint!(u32); -impl_to_primitive_uint!(u64); -impl_to_primitive_uint!(u128); - -macro_rules! impl_to_primitive_float_to_float { - ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( - #[inline] - fn $method(&self) -> Option<$DstT> { - // We can safely cast all values, whether NaN, +-inf, or finite. - // Finite values that are reducing size may saturate to +-inf. - Some(*self as $DstT) - } - )*} -} - -#[cfg(has_to_int_unchecked)] -macro_rules! float_to_int_unchecked { - // SAFETY: Must not be NaN or infinite; must be representable as the integer after truncating. - // We already checked that the float is in the exclusive range `(MIN-1, MAX+1)`. - ($float:expr => $int:ty) => { - unsafe { $float.to_int_unchecked::<$int>() } - }; -} - -#[cfg(not(has_to_int_unchecked))] -macro_rules! float_to_int_unchecked { - ($float:expr => $int:ty) => { - $float as $int - }; -} - -macro_rules! impl_to_primitive_float_to_signed_int { - ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$i> { - // Float as int truncates toward zero, so we want to allow values - // in the exclusive range `(MIN-1, MAX+1)`. - if size_of::<$f>() > size_of::<$i>() { - // With a larger size, we can represent the range exactly. - const MIN_M1: $f = $i::MIN as $f - 1.0; - const MAX_P1: $f = $i::MAX as $f + 1.0; - if *self > MIN_M1 && *self < MAX_P1 { - return Some(float_to_int_unchecked!(*self => $i)); - } - } else { - // We can't represent `MIN-1` exactly, but there's no fractional part - // at this magnitude, so we can just use a `MIN` inclusive boundary. - const MIN: $f = $i::MIN as $f; - // We can't represent `MAX` exactly, but it will round up to exactly - // `MAX+1` (a power of two) when we cast it. - const MAX_P1: $f = $i::MAX as $f; - if *self >= MIN && *self < MAX_P1 { - return Some(float_to_int_unchecked!(*self => $i)); - } - } - None - } - )*} -} - -macro_rules! impl_to_primitive_float_to_unsigned_int { - ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$u> { - // Float as int truncates toward zero, so we want to allow values - // in the exclusive range `(-1, MAX+1)`. - if size_of::<$f>() > size_of::<$u>() { - // With a larger size, we can represent the range exactly. - const MAX_P1: $f = $u::MAX as $f + 1.0; - if *self > -1.0 && *self < MAX_P1 { - return Some(float_to_int_unchecked!(*self => $u)); - } - } else { - // We can't represent `MAX` exactly, but it will round up to exactly - // `MAX+1` (a power of two) when we cast it. - // (`u128::MAX as f32` is infinity, but this is still ok.) - const MAX_P1: $f = $u::MAX as $f; - if *self > -1.0 && *self < MAX_P1 { - return Some(float_to_int_unchecked!(*self => $u)); - } - } - None - } - )*} -} - -macro_rules! impl_to_primitive_float { - ($T:ident) => { - impl ToPrimitive for $T { - impl_to_primitive_float_to_signed_int! { $T: - fn to_isize -> isize; - fn to_i8 -> i8; - fn to_i16 -> i16; - fn to_i32 -> i32; - fn to_i64 -> i64; - fn to_i128 -> i128; - } - - impl_to_primitive_float_to_unsigned_int! { $T: - fn to_usize -> usize; - fn to_u8 -> u8; - fn to_u16 -> u16; - fn to_u32 -> u32; - fn to_u64 -> u64; - fn to_u128 -> u128; - } - - impl_to_primitive_float_to_float! { $T: - fn to_f32 -> f32; - fn to_f64 -> f64; - } - } - }; -} - -impl_to_primitive_float!(f32); -impl_to_primitive_float!(f64); - -/// A generic trait for converting a number to a value. -/// -/// A value can be represented by the target type when it lies within -/// the range of scalars supported by the target type. -/// For example, a negative integer cannot be represented by an unsigned -/// integer type, and an `i64` with a very high magnitude might not be -/// convertible to an `i32`. -/// On the other hand, conversions with possible precision loss or truncation -/// are admitted, like an `f32` with a decimal part to an integer type, or -/// even a large `f64` saturating to `f32` infinity. -pub trait FromPrimitive: Sized { - /// Converts an `isize` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_isize(n: isize) -> Option<Self> { - n.to_i64().and_then(FromPrimitive::from_i64) - } - - /// Converts an `i8` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_i8(n: i8) -> Option<Self> { - FromPrimitive::from_i64(From::from(n)) - } - - /// Converts an `i16` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_i16(n: i16) -> Option<Self> { - FromPrimitive::from_i64(From::from(n)) - } - - /// Converts an `i32` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_i32(n: i32) -> Option<Self> { - FromPrimitive::from_i64(From::from(n)) - } - - /// Converts an `i64` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - fn from_i64(n: i64) -> Option<Self>; - - /// Converts an `i128` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - /// - /// The default implementation converts through `from_i64()`. Types implementing - /// this trait should override this method if they can represent a greater range. - #[inline] - fn from_i128(n: i128) -> Option<Self> { - n.to_i64().and_then(FromPrimitive::from_i64) - } - - /// Converts a `usize` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_usize(n: usize) -> Option<Self> { - n.to_u64().and_then(FromPrimitive::from_u64) - } - - /// Converts an `u8` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_u8(n: u8) -> Option<Self> { - FromPrimitive::from_u64(From::from(n)) - } - - /// Converts an `u16` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_u16(n: u16) -> Option<Self> { - FromPrimitive::from_u64(From::from(n)) - } - - /// Converts an `u32` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_u32(n: u32) -> Option<Self> { - FromPrimitive::from_u64(From::from(n)) - } - - /// Converts an `u64` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - fn from_u64(n: u64) -> Option<Self>; - - /// Converts an `u128` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - /// - /// The default implementation converts through `from_u64()`. Types implementing - /// this trait should override this method if they can represent a greater range. - #[inline] - fn from_u128(n: u128) -> Option<Self> { - n.to_u64().and_then(FromPrimitive::from_u64) - } - - /// Converts a `f32` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - #[inline] - fn from_f32(n: f32) -> Option<Self> { - FromPrimitive::from_f64(From::from(n)) - } - - /// Converts a `f64` to return an optional value of this type. If the - /// value cannot be represented by this type, then `None` is returned. - /// - /// The default implementation tries to convert through `from_i64()`, and - /// failing that through `from_u64()`. Types implementing this trait should - /// override this method if they can represent a greater range. - #[inline] - fn from_f64(n: f64) -> Option<Self> { - match n.to_i64() { - Some(i) => FromPrimitive::from_i64(i), - None => n.to_u64().and_then(FromPrimitive::from_u64), - } - } -} - -macro_rules! impl_from_primitive { - ($T:ty, $to_ty:ident) => { - #[allow(deprecated)] - impl FromPrimitive for $T { - #[inline] - fn from_isize(n: isize) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_i8(n: i8) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_i16(n: i16) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_i32(n: i32) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_i64(n: i64) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_i128(n: i128) -> Option<$T> { - n.$to_ty() - } - - #[inline] - fn from_usize(n: usize) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_u8(n: u8) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_u16(n: u16) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_u32(n: u32) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_u64(n: u64) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_u128(n: u128) -> Option<$T> { - n.$to_ty() - } - - #[inline] - fn from_f32(n: f32) -> Option<$T> { - n.$to_ty() - } - #[inline] - fn from_f64(n: f64) -> Option<$T> { - n.$to_ty() - } - } - }; -} - -impl_from_primitive!(isize, to_isize); -impl_from_primitive!(i8, to_i8); -impl_from_primitive!(i16, to_i16); -impl_from_primitive!(i32, to_i32); -impl_from_primitive!(i64, to_i64); -impl_from_primitive!(i128, to_i128); -impl_from_primitive!(usize, to_usize); -impl_from_primitive!(u8, to_u8); -impl_from_primitive!(u16, to_u16); -impl_from_primitive!(u32, to_u32); -impl_from_primitive!(u64, to_u64); -impl_from_primitive!(u128, to_u128); -impl_from_primitive!(f32, to_f32); -impl_from_primitive!(f64, to_f64); - -macro_rules! impl_to_primitive_wrapping { - ($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(&self) -> Option<$i> { - (self.0).$method() - } - )*} -} - -impl<T: ToPrimitive> ToPrimitive for Wrapping<T> { - impl_to_primitive_wrapping! { - fn to_isize -> isize; - fn to_i8 -> i8; - fn to_i16 -> i16; - fn to_i32 -> i32; - fn to_i64 -> i64; - fn to_i128 -> i128; - - fn to_usize -> usize; - fn to_u8 -> u8; - fn to_u16 -> u16; - fn to_u32 -> u32; - fn to_u64 -> u64; - fn to_u128 -> u128; - - fn to_f32 -> f32; - fn to_f64 -> f64; - } -} - -macro_rules! impl_from_primitive_wrapping { - ($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$( - #[inline] - $(#[$cfg])* - fn $method(n: $i) -> Option<Self> { - T::$method(n).map(Wrapping) - } - )*} -} - -impl<T: FromPrimitive> FromPrimitive for Wrapping<T> { - impl_from_primitive_wrapping! { - fn from_isize(isize); - fn from_i8(i8); - fn from_i16(i16); - fn from_i32(i32); - fn from_i64(i64); - fn from_i128(i128); - - fn from_usize(usize); - fn from_u8(u8); - fn from_u16(u16); - fn from_u32(u32); - fn from_u64(u64); - fn from_u128(u128); - - fn from_f32(f32); - fn from_f64(f64); - } -} - -/// Cast from one machine scalar to another. -/// -/// # Examples -/// -/// ``` -/// # use num_traits as num; -/// let twenty: f32 = num::cast(0x14).unwrap(); -/// assert_eq!(twenty, 20f32); -/// ``` -/// -#[inline] -pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> { - NumCast::from(n) -} - -/// An interface for casting between machine scalars. -pub trait NumCast: Sized + ToPrimitive { - /// Creates a number from another value that can be converted into - /// a primitive via the `ToPrimitive` trait. If the source value cannot be - /// represented by the target type, then `None` is returned. - /// - /// A value can be represented by the target type when it lies within - /// the range of scalars supported by the target type. - /// For example, a negative integer cannot be represented by an unsigned - /// integer type, and an `i64` with a very high magnitude might not be - /// convertible to an `i32`. - /// On the other hand, conversions with possible precision loss or truncation - /// are admitted, like an `f32` with a decimal part to an integer type, or - /// even a large `f64` saturating to `f32` infinity. - fn from<T: ToPrimitive>(n: T) -> Option<Self>; -} - -macro_rules! impl_num_cast { - ($T:ty, $conv:ident) => { - impl NumCast for $T { - #[inline] - #[allow(deprecated)] - fn from<N: ToPrimitive>(n: N) -> Option<$T> { - // `$conv` could be generated using `concat_idents!`, but that - // macro seems to be broken at the moment - n.$conv() - } - } - }; -} - -impl_num_cast!(u8, to_u8); -impl_num_cast!(u16, to_u16); -impl_num_cast!(u32, to_u32); -impl_num_cast!(u64, to_u64); -impl_num_cast!(u128, to_u128); -impl_num_cast!(usize, to_usize); -impl_num_cast!(i8, to_i8); -impl_num_cast!(i16, to_i16); -impl_num_cast!(i32, to_i32); -impl_num_cast!(i64, to_i64); -impl_num_cast!(i128, to_i128); -impl_num_cast!(isize, to_isize); -impl_num_cast!(f32, to_f32); -impl_num_cast!(f64, to_f64); - -impl<T: NumCast> NumCast for Wrapping<T> { - fn from<U: ToPrimitive>(n: U) -> Option<Self> { - T::from(n).map(Wrapping) - } -} - -/// A generic interface for casting between machine scalars with the -/// `as` operator, which admits narrowing and precision loss. -/// Implementers of this trait `AsPrimitive` should behave like a primitive -/// numeric type (e.g. a newtype around another primitive), and the -/// intended conversion must never fail. -/// -/// # Examples -/// -/// ``` -/// # use num_traits::AsPrimitive; -/// let three: i32 = (3.14159265f32).as_(); -/// assert_eq!(three, 3); -/// ``` -/// -/// # Safety -/// -/// **In Rust versions before 1.45.0**, some uses of the `as` operator were not entirely safe. -/// In particular, it was undefined behavior if -/// a truncated floating point value could not fit in the target integer -/// type ([#10184](https://github.com/rust-lang/rust/issues/10184)). -/// -/// ```ignore -/// # use num_traits::AsPrimitive; -/// let x: u8 = (1.04E+17).as_(); // UB -/// ``` -/// -pub trait AsPrimitive<T>: 'static + Copy -where - T: 'static + Copy, -{ - /// Convert a value to another, using the `as` operator. - fn as_(self) -> T; -} - -macro_rules! impl_as_primitive { - (@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => { - $(#[$cfg])* - impl AsPrimitive<$U> for $T { - #[inline] fn as_(self) -> $U { self as $U } - } - }; - (@ $T: ty => { $( $U: ty ),* } ) => {$( - impl_as_primitive!(@ $T => impl $U); - )*}; - ($T: ty => { $( $U: ty ),* } ) => { - impl_as_primitive!(@ $T => { $( $U ),* }); - impl_as_primitive!(@ $T => { u8, u16, u32, u64, u128, usize }); - impl_as_primitive!(@ $T => { i8, i16, i32, i64, i128, isize }); - }; -} - -impl_as_primitive!(u8 => { char, f32, f64 }); -impl_as_primitive!(i8 => { f32, f64 }); -impl_as_primitive!(u16 => { f32, f64 }); -impl_as_primitive!(i16 => { f32, f64 }); -impl_as_primitive!(u32 => { f32, f64 }); -impl_as_primitive!(i32 => { f32, f64 }); -impl_as_primitive!(u64 => { f32, f64 }); -impl_as_primitive!(i64 => { f32, f64 }); -impl_as_primitive!(u128 => { f32, f64 }); -impl_as_primitive!(i128 => { f32, f64 }); -impl_as_primitive!(usize => { f32, f64 }); -impl_as_primitive!(isize => { f32, f64 }); -impl_as_primitive!(f32 => { f32, f64 }); -impl_as_primitive!(f64 => { f32, f64 }); -impl_as_primitive!(char => { char }); -impl_as_primitive!(bool => {}); diff --git a/vendor/num-traits/src/float.rs b/vendor/num-traits/src/float.rs deleted file mode 100644 index 87f8387..0000000 --- a/vendor/num-traits/src/float.rs +++ /dev/null @@ -1,2344 +0,0 @@ -use core::num::FpCategory; -use core::ops::{Add, Div, Neg}; - -use core::f32; -use core::f64; - -use crate::{Num, NumCast, ToPrimitive}; - -/// Generic trait for floating point numbers that works with `no_std`. -/// -/// This trait implements a subset of the `Float` trait. -pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { - /// Returns positive infinity. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::infinity() == x); - /// } - /// - /// check(f32::INFINITY); - /// check(f64::INFINITY); - /// ``` - fn infinity() -> Self; - - /// Returns negative infinity. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::neg_infinity() == x); - /// } - /// - /// check(f32::NEG_INFINITY); - /// check(f64::NEG_INFINITY); - /// ``` - fn neg_infinity() -> Self; - - /// Returns NaN. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// - /// fn check<T: FloatCore>() { - /// let n = T::nan(); - /// assert!(n != n); - /// } - /// - /// check::<f32>(); - /// check::<f64>(); - /// ``` - fn nan() -> Self; - - /// Returns `-0.0`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(n: T) { - /// let z = T::neg_zero(); - /// assert!(z.is_zero()); - /// assert!(T::one() / z == n); - /// } - /// - /// check(f32::NEG_INFINITY); - /// check(f64::NEG_INFINITY); - /// ``` - fn neg_zero() -> Self; - - /// Returns the smallest finite value that this type can represent. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::min_value() == x); - /// } - /// - /// check(f32::MIN); - /// check(f64::MIN); - /// ``` - fn min_value() -> Self; - - /// Returns the smallest positive, normalized value that this type can represent. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::min_positive_value() == x); - /// } - /// - /// check(f32::MIN_POSITIVE); - /// check(f64::MIN_POSITIVE); - /// ``` - fn min_positive_value() -> Self; - - /// Returns epsilon, a small positive value. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::epsilon() == x); - /// } - /// - /// check(f32::EPSILON); - /// check(f64::EPSILON); - /// ``` - fn epsilon() -> Self; - - /// Returns the largest finite value that this type can represent. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T) { - /// assert!(T::max_value() == x); - /// } - /// - /// check(f32::MAX); - /// check(f64::MAX); - /// ``` - fn max_value() -> Self; - - /// Returns `true` if the number is NaN. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_nan() == p); - /// } - /// - /// check(f32::NAN, true); - /// check(f32::INFINITY, false); - /// check(f64::NAN, true); - /// check(0.0f64, false); - /// ``` - #[inline] - #[allow(clippy::eq_op)] - fn is_nan(self) -> bool { - self != self - } - - /// Returns `true` if the number is infinite. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_infinite() == p); - /// } - /// - /// check(f32::INFINITY, true); - /// check(f32::NEG_INFINITY, true); - /// check(f32::NAN, false); - /// check(f64::INFINITY, true); - /// check(f64::NEG_INFINITY, true); - /// check(0.0f64, false); - /// ``` - #[inline] - fn is_infinite(self) -> bool { - self == Self::infinity() || self == Self::neg_infinity() - } - - /// Returns `true` if the number is neither infinite or NaN. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_finite() == p); - /// } - /// - /// check(f32::INFINITY, false); - /// check(f32::MAX, true); - /// check(f64::NEG_INFINITY, false); - /// check(f64::MIN_POSITIVE, true); - /// check(f64::NAN, false); - /// ``` - #[inline] - fn is_finite(self) -> bool { - !(self.is_nan() || self.is_infinite()) - } - - /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_normal() == p); - /// } - /// - /// check(f32::INFINITY, false); - /// check(f32::MAX, true); - /// check(f64::NEG_INFINITY, false); - /// check(f64::MIN_POSITIVE, true); - /// check(0.0f64, false); - /// ``` - #[inline] - fn is_normal(self) -> bool { - self.classify() == FpCategory::Normal - } - - /// Returns `true` if the number is [subnormal]. - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::f64; - /// - /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 - /// let max = f64::MAX; - /// let lower_than_min = 1.0e-308_f64; - /// let zero = 0.0_f64; - /// - /// assert!(!min.is_subnormal()); - /// assert!(!max.is_subnormal()); - /// - /// assert!(!zero.is_subnormal()); - /// assert!(!f64::NAN.is_subnormal()); - /// assert!(!f64::INFINITY.is_subnormal()); - /// // Values between `0` and `min` are Subnormal. - /// assert!(lower_than_min.is_subnormal()); - /// ``` - /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number - #[inline] - fn is_subnormal(self) -> bool { - self.classify() == FpCategory::Subnormal - } - - /// Returns the floating point category of the number. If only one property - /// is going to be tested, it is generally faster to use the specific - /// predicate instead. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// use std::num::FpCategory; - /// - /// fn check<T: FloatCore>(x: T, c: FpCategory) { - /// assert!(x.classify() == c); - /// } - /// - /// check(f32::INFINITY, FpCategory::Infinite); - /// check(f32::MAX, FpCategory::Normal); - /// check(f64::NAN, FpCategory::Nan); - /// check(f64::MIN_POSITIVE, FpCategory::Normal); - /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); - /// check(0.0f64, FpCategory::Zero); - /// ``` - fn classify(self) -> FpCategory; - - /// Returns the largest integer less than or equal to a number. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.floor() == y); - /// } - /// - /// check(f32::INFINITY, f32::INFINITY); - /// check(0.9f32, 0.0); - /// check(1.0f32, 1.0); - /// check(1.1f32, 1.0); - /// check(-0.0f64, 0.0); - /// check(-0.9f64, -1.0); - /// check(-1.0f64, -1.0); - /// check(-1.1f64, -2.0); - /// check(f64::MIN, f64::MIN); - /// ``` - #[inline] - fn floor(self) -> Self { - let f = self.fract(); - if f.is_nan() || f.is_zero() { - self - } else if self < Self::zero() { - self - f - Self::one() - } else { - self - f - } - } - - /// Returns the smallest integer greater than or equal to a number. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.ceil() == y); - /// } - /// - /// check(f32::INFINITY, f32::INFINITY); - /// check(0.9f32, 1.0); - /// check(1.0f32, 1.0); - /// check(1.1f32, 2.0); - /// check(-0.0f64, 0.0); - /// check(-0.9f64, -0.0); - /// check(-1.0f64, -1.0); - /// check(-1.1f64, -1.0); - /// check(f64::MIN, f64::MIN); - /// ``` - #[inline] - fn ceil(self) -> Self { - let f = self.fract(); - if f.is_nan() || f.is_zero() { - self - } else if self > Self::zero() { - self - f + Self::one() - } else { - self - f - } - } - - /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.round() == y); - /// } - /// - /// check(f32::INFINITY, f32::INFINITY); - /// check(0.4f32, 0.0); - /// check(0.5f32, 1.0); - /// check(0.6f32, 1.0); - /// check(-0.4f64, 0.0); - /// check(-0.5f64, -1.0); - /// check(-0.6f64, -1.0); - /// check(f64::MIN, f64::MIN); - /// ``` - #[inline] - fn round(self) -> Self { - let one = Self::one(); - let h = Self::from(0.5).expect("Unable to cast from 0.5"); - let f = self.fract(); - if f.is_nan() || f.is_zero() { - self - } else if self > Self::zero() { - if f < h { - self - f - } else { - self - f + one - } - } else if -f < h { - self - f - } else { - self - f - one - } - } - - /// Return the integer part of a number. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.trunc() == y); - /// } - /// - /// check(f32::INFINITY, f32::INFINITY); - /// check(0.9f32, 0.0); - /// check(1.0f32, 1.0); - /// check(1.1f32, 1.0); - /// check(-0.0f64, 0.0); - /// check(-0.9f64, -0.0); - /// check(-1.0f64, -1.0); - /// check(-1.1f64, -1.0); - /// check(f64::MIN, f64::MIN); - /// ``` - #[inline] - fn trunc(self) -> Self { - let f = self.fract(); - if f.is_nan() { - self - } else { - self - f - } - } - - /// Returns the fractional part of a number. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.fract() == y); - /// } - /// - /// check(f32::MAX, 0.0); - /// check(0.75f32, 0.75); - /// check(1.0f32, 0.0); - /// check(1.25f32, 0.25); - /// check(-0.0f64, 0.0); - /// check(-0.75f64, -0.75); - /// check(-1.0f64, 0.0); - /// check(-1.25f64, -0.25); - /// check(f64::MIN, 0.0); - /// ``` - #[inline] - fn fract(self) -> Self { - if self.is_zero() { - Self::zero() - } else { - self % Self::one() - } - } - - /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the - /// number is `FloatCore::nan()`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.abs() == y); - /// } - /// - /// check(f32::INFINITY, f32::INFINITY); - /// check(1.0f32, 1.0); - /// check(0.0f64, 0.0); - /// check(-0.0f64, 0.0); - /// check(-1.0f64, 1.0); - /// check(f64::MIN, f64::MAX); - /// ``` - #[inline] - fn abs(self) -> Self { - if self.is_sign_positive() { - return self; - } - if self.is_sign_negative() { - return -self; - } - Self::nan() - } - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` - /// - `FloatCore::nan()` if the number is `FloatCore::nan()` - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.signum() == y); - /// } - /// - /// check(f32::INFINITY, 1.0); - /// check(3.0f32, 1.0); - /// check(0.0f32, 1.0); - /// check(-0.0f64, -1.0); - /// check(-3.0f64, -1.0); - /// check(f64::MIN, -1.0); - /// ``` - #[inline] - fn signum(self) -> Self { - if self.is_nan() { - Self::nan() - } else if self.is_sign_negative() { - -Self::one() - } else { - Self::one() - } - } - - /// Returns `true` if `self` is positive, including `+0.0` and - /// `FloatCore::infinity()`, and `FloatCore::nan()`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_sign_positive() == p); - /// } - /// - /// check(f32::INFINITY, true); - /// check(f32::MAX, true); - /// check(0.0f32, true); - /// check(-0.0f64, false); - /// check(f64::NEG_INFINITY, false); - /// check(f64::MIN_POSITIVE, true); - /// check(f64::NAN, true); - /// check(-f64::NAN, false); - /// ``` - #[inline] - fn is_sign_positive(self) -> bool { - !self.is_sign_negative() - } - - /// Returns `true` if `self` is negative, including `-0.0` and - /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, p: bool) { - /// assert!(x.is_sign_negative() == p); - /// } - /// - /// check(f32::INFINITY, false); - /// check(f32::MAX, false); - /// check(0.0f32, false); - /// check(-0.0f64, true); - /// check(f64::NEG_INFINITY, true); - /// check(f64::MIN_POSITIVE, false); - /// check(f64::NAN, false); - /// check(-f64::NAN, true); - /// ``` - #[inline] - fn is_sign_negative(self) -> bool { - let (_, _, sign) = self.integer_decode(); - sign < 0 - } - - /// Returns the minimum of the two numbers. - /// - /// If one of the arguments is NaN, then the other argument is returned. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T, min: T) { - /// assert!(x.min(y) == min); - /// } - /// - /// check(1.0f32, 2.0, 1.0); - /// check(f32::NAN, 2.0, 2.0); - /// check(1.0f64, -2.0, -2.0); - /// check(1.0f64, f64::NAN, 1.0); - /// ``` - #[inline] - fn min(self, other: Self) -> Self { - if self.is_nan() { - return other; - } - if other.is_nan() { - return self; - } - if self < other { - self - } else { - other - } - } - - /// Returns the maximum of the two numbers. - /// - /// If one of the arguments is NaN, then the other argument is returned. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T, max: T) { - /// assert!(x.max(y) == max); - /// } - /// - /// check(1.0f32, 2.0, 2.0); - /// check(1.0f32, f32::NAN, 1.0); - /// check(-1.0f64, 2.0, 2.0); - /// check(-1.0f64, f64::NAN, -1.0); - /// ``` - #[inline] - fn max(self, other: Self) -> Self { - if self.is_nan() { - return other; - } - if other.is_nan() { - return self; - } - if self > other { - self - } else { - other - } - } - - /// Returns the reciprocal (multiplicative inverse) of the number. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, y: T) { - /// assert!(x.recip() == y); - /// assert!(y.recip() == x); - /// } - /// - /// check(f32::INFINITY, 0.0); - /// check(2.0f32, 0.5); - /// check(-0.25f64, -4.0); - /// check(-0.0f64, f64::NEG_INFINITY); - /// ``` - #[inline] - fn recip(self) -> Self { - Self::one() / self - } - - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// - /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { - /// assert!(x.powi(exp) == powi); - /// } - /// - /// check(9.0f32, 2, 81.0); - /// check(1.0f32, -2, 1.0); - /// check(10.0f64, 20, 1e20); - /// check(4.0f64, -2, 0.0625); - /// check(-1.0f64, std::i32::MIN, 1.0); - /// ``` - #[inline] - fn powi(mut self, mut exp: i32) -> Self { - if exp < 0 { - exp = exp.wrapping_neg(); - self = self.recip(); - } - // It should always be possible to convert a positive `i32` to a `usize`. - // Note, `i32::MIN` will wrap and still be negative, so we need to convert - // to `u32` without sign-extension before growing to `usize`. - super::pow(self, (exp as u32).to_usize().unwrap()) - } - - /// Converts to degrees, assuming the number is in radians. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(rad: T, deg: T) { - /// assert!(rad.to_degrees() == deg); - /// } - /// - /// check(0.0f32, 0.0); - /// check(f32::consts::PI, 180.0); - /// check(f64::consts::FRAC_PI_4, 45.0); - /// check(f64::INFINITY, f64::INFINITY); - /// ``` - fn to_degrees(self) -> Self; - - /// Converts to radians, assuming the number is in degrees. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(deg: T, rad: T) { - /// assert!(deg.to_radians() == rad); - /// } - /// - /// check(0.0f32, 0.0); - /// check(180.0, f32::consts::PI); - /// check(45.0, f64::consts::FRAC_PI_4); - /// check(f64::INFINITY, f64::INFINITY); - /// ``` - fn to_radians(self) -> Self; - - /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. - /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::float::FloatCore; - /// use std::{f32, f64}; - /// - /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { - /// let (mantissa, exponent, sign) = x.integer_decode(); - /// assert_eq!(mantissa, m); - /// assert_eq!(exponent, e); - /// assert_eq!(sign, s); - /// } - /// - /// check(2.0f32, 1 << 23, -22, 1); - /// check(-2.0f32, 1 << 23, -22, -1); - /// check(f32::INFINITY, 1 << 23, 105, 1); - /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); - /// ``` - fn integer_decode(self) -> (u64, i16, i8); -} - -impl FloatCore for f32 { - constant! { - infinity() -> f32::INFINITY; - neg_infinity() -> f32::NEG_INFINITY; - nan() -> f32::NAN; - neg_zero() -> -0.0; - min_value() -> f32::MIN; - min_positive_value() -> f32::MIN_POSITIVE; - epsilon() -> f32::EPSILON; - max_value() -> f32::MAX; - } - - #[inline] - fn integer_decode(self) -> (u64, i16, i8) { - integer_decode_f32(self) - } - - forward! { - Self::is_nan(self) -> bool; - Self::is_infinite(self) -> bool; - Self::is_finite(self) -> bool; - Self::is_normal(self) -> bool; - Self::classify(self) -> FpCategory; - Self::is_sign_positive(self) -> bool; - Self::is_sign_negative(self) -> bool; - Self::min(self, other: Self) -> Self; - Self::max(self, other: Self) -> Self; - Self::recip(self) -> Self; - Self::to_degrees(self) -> Self; - Self::to_radians(self) -> Self; - } - - #[cfg(has_is_subnormal)] - forward! { - Self::is_subnormal(self) -> bool; - } - - #[cfg(feature = "std")] - forward! { - Self::floor(self) -> Self; - Self::ceil(self) -> Self; - Self::round(self) -> Self; - Self::trunc(self) -> Self; - Self::fract(self) -> Self; - Self::abs(self) -> Self; - Self::signum(self) -> Self; - Self::powi(self, n: i32) -> Self; - } - - #[cfg(all(not(feature = "std"), feature = "libm"))] - forward! { - libm::floorf as floor(self) -> Self; - libm::ceilf as ceil(self) -> Self; - libm::roundf as round(self) -> Self; - libm::truncf as trunc(self) -> Self; - libm::fabsf as abs(self) -> Self; - } - - #[cfg(all(not(feature = "std"), feature = "libm"))] - #[inline] - fn fract(self) -> Self { - self - libm::truncf(self) - } -} - -impl FloatCore for f64 { - constant! { - infinity() -> f64::INFINITY; - neg_infinity() -> f64::NEG_INFINITY; - nan() -> f64::NAN; - neg_zero() -> -0.0; - min_value() -> f64::MIN; - min_positive_value() -> f64::MIN_POSITIVE; - epsilon() -> f64::EPSILON; - max_value() -> f64::MAX; - } - - #[inline] - fn integer_decode(self) -> (u64, i16, i8) { - integer_decode_f64(self) - } - - forward! { - Self::is_nan(self) -> bool; - Self::is_infinite(self) -> bool; - Self::is_finite(self) -> bool; - Self::is_normal(self) -> bool; - Self::classify(self) -> FpCategory; - Self::is_sign_positive(self) -> bool; - Self::is_sign_negative(self) -> bool; - Self::min(self, other: Self) -> Self; - Self::max(self, other: Self) -> Self; - Self::recip(self) -> Self; - Self::to_degrees(self) -> Self; - Self::to_radians(self) -> Self; - } - - #[cfg(has_is_subnormal)] - forward! { - Self::is_subnormal(self) -> bool; - } - - #[cfg(feature = "std")] - forward! { - Self::floor(self) -> Self; - Self::ceil(self) -> Self; - Self::round(self) -> Self; - Self::trunc(self) -> Self; - Self::fract(self) -> Self; - Self::abs(self) -> Self; - Self::signum(self) -> Self; - Self::powi(self, n: i32) -> Self; - } - - #[cfg(all(not(feature = "std"), feature = "libm"))] - forward! { - libm::floor as floor(self) -> Self; - libm::ceil as ceil(self) -> Self; - libm::round as round(self) -> Self; - libm::trunc as trunc(self) -> Self; - libm::fabs as abs(self) -> Self; - } - - #[cfg(all(not(feature = "std"), feature = "libm"))] - #[inline] - fn fract(self) -> Self { - self - libm::trunc(self) - } -} - -// FIXME: these doctests aren't actually helpful, because they're using and -// testing the inherent methods directly, not going through `Float`. - -/// Generic trait for floating point numbers -/// -/// This trait is only available with the `std` feature, or with the `libm` feature otherwise. -#[cfg(any(feature = "std", feature = "libm"))] -pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { - /// Returns the `NaN` value. - /// - /// ``` - /// use num_traits::Float; - /// - /// let nan: f32 = Float::nan(); - /// - /// assert!(nan.is_nan()); - /// ``` - fn nan() -> Self; - /// Returns the infinite value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let infinity: f32 = Float::infinity(); - /// - /// assert!(infinity.is_infinite()); - /// assert!(!infinity.is_finite()); - /// assert!(infinity > f32::MAX); - /// ``` - fn infinity() -> Self; - /// Returns the negative infinite value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let neg_infinity: f32 = Float::neg_infinity(); - /// - /// assert!(neg_infinity.is_infinite()); - /// assert!(!neg_infinity.is_finite()); - /// assert!(neg_infinity < f32::MIN); - /// ``` - fn neg_infinity() -> Self; - /// Returns `-0.0`. - /// - /// ``` - /// use num_traits::{Zero, Float}; - /// - /// let inf: f32 = Float::infinity(); - /// let zero: f32 = Zero::zero(); - /// let neg_zero: f32 = Float::neg_zero(); - /// - /// assert_eq!(zero, neg_zero); - /// assert_eq!(7.0f32/inf, zero); - /// assert_eq!(zero * 10.0, zero); - /// ``` - fn neg_zero() -> Self; - - /// Returns the smallest finite value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::min_value(); - /// - /// assert_eq!(x, f64::MIN); - /// ``` - fn min_value() -> Self; - - /// Returns the smallest positive, normalized value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::min_positive_value(); - /// - /// assert_eq!(x, f64::MIN_POSITIVE); - /// ``` - fn min_positive_value() -> Self; - - /// Returns epsilon, a small positive value. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::epsilon(); - /// - /// assert_eq!(x, f64::EPSILON); - /// ``` - /// - /// # Panics - /// - /// The default implementation will panic if `f32::EPSILON` cannot - /// be cast to `Self`. - fn epsilon() -> Self { - Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON") - } - - /// Returns the largest finite value that this type can represent. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x: f64 = Float::max_value(); - /// assert_eq!(x, f64::MAX); - /// ``` - fn max_value() -> Self; - - /// Returns `true` if this value is `NaN` and false otherwise. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let nan = f64::NAN; - /// let f = 7.0; - /// - /// assert!(nan.is_nan()); - /// assert!(!f.is_nan()); - /// ``` - fn is_nan(self) -> bool; - - /// Returns `true` if this value is positive infinity or negative infinity and - /// false otherwise. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let f = 7.0f32; - /// let inf: f32 = Float::infinity(); - /// let neg_inf: f32 = Float::neg_infinity(); - /// let nan: f32 = f32::NAN; - /// - /// assert!(!f.is_infinite()); - /// assert!(!nan.is_infinite()); - /// - /// assert!(inf.is_infinite()); - /// assert!(neg_inf.is_infinite()); - /// ``` - fn is_infinite(self) -> bool; - - /// Returns `true` if this number is neither infinite nor `NaN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let f = 7.0f32; - /// let inf: f32 = Float::infinity(); - /// let neg_inf: f32 = Float::neg_infinity(); - /// let nan: f32 = f32::NAN; - /// - /// assert!(f.is_finite()); - /// - /// assert!(!nan.is_finite()); - /// assert!(!inf.is_finite()); - /// assert!(!neg_inf.is_finite()); - /// ``` - fn is_finite(self) -> bool; - - /// Returns `true` if the number is neither zero, infinite, - /// [subnormal][subnormal], or `NaN`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f32; - /// - /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 - /// let max = f32::MAX; - /// let lower_than_min = 1.0e-40_f32; - /// let zero = 0.0f32; - /// - /// assert!(min.is_normal()); - /// assert!(max.is_normal()); - /// - /// assert!(!zero.is_normal()); - /// assert!(!f32::NAN.is_normal()); - /// assert!(!f32::INFINITY.is_normal()); - /// // Values between `0` and `min` are Subnormal. - /// assert!(!lower_than_min.is_normal()); - /// ``` - /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number - fn is_normal(self) -> bool; - - /// Returns `true` if the number is [subnormal]. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 - /// let max = f64::MAX; - /// let lower_than_min = 1.0e-308_f64; - /// let zero = 0.0_f64; - /// - /// assert!(!min.is_subnormal()); - /// assert!(!max.is_subnormal()); - /// - /// assert!(!zero.is_subnormal()); - /// assert!(!f64::NAN.is_subnormal()); - /// assert!(!f64::INFINITY.is_subnormal()); - /// // Values between `0` and `min` are Subnormal. - /// assert!(lower_than_min.is_subnormal()); - /// ``` - /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number - #[inline] - fn is_subnormal(self) -> bool { - self.classify() == FpCategory::Subnormal - } - - /// Returns the floating point category of the number. If only one property - /// is going to be tested, it is generally faster to use the specific - /// predicate instead. - /// - /// ``` - /// use num_traits::Float; - /// use std::num::FpCategory; - /// use std::f32; - /// - /// let num = 12.4f32; - /// let inf = f32::INFINITY; - /// - /// assert_eq!(num.classify(), FpCategory::Normal); - /// assert_eq!(inf.classify(), FpCategory::Infinite); - /// ``` - fn classify(self) -> FpCategory; - - /// Returns the largest integer less than or equal to a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.99; - /// let g = 3.0; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// ``` - fn floor(self) -> Self; - - /// Returns the smallest integer greater than or equal to a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.01; - /// let g = 4.0; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// ``` - fn ceil(self) -> Self; - - /// Returns the nearest integer to a number. Round half-way cases away from - /// `0.0`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.3; - /// let g = -3.3; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// ``` - fn round(self) -> Self; - - /// Return the integer part of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.3; - /// let g = -3.7; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), -3.0); - /// ``` - fn trunc(self) -> Self; - - /// Returns the fractional part of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 3.5; - /// let y = -3.5; - /// let abs_difference_x = (x.fract() - 0.5).abs(); - /// let abs_difference_y = (y.fract() - (-0.5)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn fract(self) -> Self; - - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = 3.5; - /// let y = -3.5; - /// - /// let abs_difference_x = (x.abs() - x).abs(); - /// let abs_difference_y = (y.abs() - (-y)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// - /// assert!(f64::NAN.abs().is_nan()); - /// ``` - fn abs(self) -> Self; - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = 3.5; - /// - /// assert_eq!(f.signum(), 1.0); - /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); - /// - /// assert!(f64::NAN.signum().is_nan()); - /// ``` - fn signum(self) -> Self; - - /// Returns `true` if `self` is positive, including `+0.0`, - /// `Float::infinity()`, and `Float::nan()`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let nan: f64 = f64::NAN; - /// let neg_nan: f64 = -f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(f.is_sign_positive()); - /// assert!(!g.is_sign_positive()); - /// assert!(nan.is_sign_positive()); - /// assert!(!neg_nan.is_sign_positive()); - /// ``` - fn is_sign_positive(self) -> bool; - - /// Returns `true` if `self` is negative, including `-0.0`, - /// `Float::neg_infinity()`, and `-Float::nan()`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let nan: f64 = f64::NAN; - /// let neg_nan: f64 = -f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(!f.is_sign_negative()); - /// assert!(g.is_sign_negative()); - /// assert!(!nan.is_sign_negative()); - /// assert!(neg_nan.is_sign_negative()); - /// ``` - fn is_sign_negative(self) -> bool; - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error, yielding a more accurate result than an unfused multiply-add. - /// - /// Using `mul_add` can be more performant than an unfused multiply-add if - /// the target architecture has a dedicated `fma` CPU instruction. - /// - /// ``` - /// use num_traits::Float; - /// - /// let m = 10.0; - /// let x = 4.0; - /// let b = 60.0; - /// - /// // 100.0 - /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn mul_add(self, a: Self, b: Self) -> Self; - /// Take the reciprocal (inverse) of a number, `1/x`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.recip() - (1.0/x)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn recip(self) -> Self; - - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.powi(2) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powi(self, n: i32) -> Self; - - /// Raise a number to a floating point power. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let abs_difference = (x.powf(2.0) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powf(self, n: Self) -> Self; - - /// Take the square root of a number. - /// - /// Returns NaN if `self` is a negative number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let positive = 4.0; - /// let negative = -4.0; - /// - /// let abs_difference = (positive.sqrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// assert!(negative.sqrt().is_nan()); - /// ``` - fn sqrt(self) -> Self; - - /// Returns `e^(self)`, (the exponential function). - /// - /// ``` - /// use num_traits::Float; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp(self) -> Self; - - /// Returns `2^(self)`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 2.0; - /// - /// // 2^2 - 4 == 0 - /// let abs_difference = (f.exp2() - 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp2(self) -> Self; - - /// Returns the natural logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln(self) -> Self; - - /// Returns the logarithm of the number with respect to an arbitrary base. - /// - /// ``` - /// use num_traits::Float; - /// - /// let ten = 10.0; - /// let two = 2.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); - /// - /// // log2(2) - 1 == 0 - /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); - /// - /// assert!(abs_difference_10 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn log(self, base: Self) -> Self; - - /// Returns the base 2 logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let two = 2.0; - /// - /// // log2(2) - 1 == 0 - /// let abs_difference = (two.log2() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log2(self) -> Self; - - /// Returns the base 10 logarithm of the number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let ten = 10.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference = (ten.log10() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log10(self) -> Self; - - /// Converts radians to degrees. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = consts::PI; - /// - /// let abs_difference = (angle.to_degrees() - 180.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - #[inline] - fn to_degrees(self) -> Self { - let halfpi = Self::zero().acos(); - let ninety = Self::from(90u8).unwrap(); - self * ninety / halfpi - } - - /// Converts degrees to radians. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = 180.0_f64; - /// - /// let abs_difference = (angle.to_radians() - consts::PI).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - #[inline] - fn to_radians(self) -> Self { - let halfpi = Self::zero().acos(); - let ninety = Self::from(90u8).unwrap(); - self * halfpi / ninety - } - - /// Returns the maximum of the two numbers. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.max(y), y); - /// ``` - fn max(self, other: Self) -> Self; - - /// Returns the minimum of the two numbers. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.min(y), x); - /// ``` - fn min(self, other: Self) -> Self; - - /// The positive difference of two numbers. - /// - /// * If `self <= other`: `0:0` - /// * Else: `self - other` - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 3.0; - /// let y = -3.0; - /// - /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); - /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn abs_sub(self, other: Self) -> Self; - - /// Take the cubic root of a number. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 8.0; - /// - /// // x^(1/3) - 2 == 0 - /// let abs_difference = (x.cbrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cbrt(self) -> Self; - - /// Calculate the length of the hypotenuse of a right-angle triangle given - /// legs of length `x` and `y`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 2.0; - /// let y = 3.0; - /// - /// // sqrt(x^2 + y^2) - /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn hypot(self, other: Self) -> Self; - - /// Computes the sine of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/2.0; - /// - /// let abs_difference = (x.sin() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sin(self) -> Self; - - /// Computes the cosine of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = 2.0*f64::consts::PI; - /// - /// let abs_difference = (x.cos() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cos(self) -> Self; - - /// Computes the tangent of a number (in radians). - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let abs_difference = (x.tan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-14); - /// ``` - fn tan(self) -> Self; - - /// Computes the arcsine of a number. Return value is in radians in - /// the range [-pi/2, pi/2] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = f64::consts::PI / 2.0; - /// - /// // asin(sin(pi/2)) - /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn asin(self) -> Self; - - /// Computes the arccosine of a number. Return value is in radians in - /// the range [0, pi] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let f = f64::consts::PI / 4.0; - /// - /// // acos(cos(pi/4)) - /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn acos(self) -> Self; - - /// Computes the arctangent of a number. Return value is in radians in the - /// range [-pi/2, pi/2]; - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 1.0; - /// - /// // atan(tan(1)) - /// let abs_difference = (f.tan().atan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn atan(self) -> Self; - - /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). - /// - /// * `x = 0`, `y = 0`: `0` - /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` - /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` - /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let pi = f64::consts::PI; - /// // All angles from horizontal right (+x) - /// // 45 deg counter-clockwise - /// let x1 = 3.0; - /// let y1 = -3.0; - /// - /// // 135 deg clockwise - /// let x2 = -3.0; - /// let y2 = 3.0; - /// - /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); - /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); - /// - /// assert!(abs_difference_1 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn atan2(self, other: Self) -> Self; - - /// Simultaneously computes the sine and cosine of the number, `x`. Returns - /// `(sin(x), cos(x))`. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let f = x.sin_cos(); - /// - /// let abs_difference_0 = (f.0 - x.sin()).abs(); - /// let abs_difference_1 = (f.1 - x.cos()).abs(); - /// - /// assert!(abs_difference_0 < 1e-10); - /// assert!(abs_difference_0 < 1e-10); - /// ``` - fn sin_cos(self) -> (Self, Self); - - /// Returns `e^(self) - 1` in a way that is accurate even if the - /// number is close to zero. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 7.0; - /// - /// // e^(ln(7)) - 1 - /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp_m1(self) -> Self; - - /// Returns `ln(1+n)` (natural logarithm) more accurately than if - /// the operations were performed separately. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let x = f64::consts::E - 1.0; - /// - /// // ln(1 + (e - 1)) == ln(e) == 1 - /// let abs_difference = (x.ln_1p() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln_1p(self) -> Self; - - /// Hyperbolic sine function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.sinh(); - /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` - /// let g = (e*e - 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sinh(self) -> Self; - - /// Hyperbolic cosine function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// let f = x.cosh(); - /// // Solving cosh() at 1 gives this result - /// let g = (e*e + 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// // Same result - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn cosh(self) -> Self; - - /// Hyperbolic tangent function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.tanh(); - /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` - /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn tanh(self) -> Self; - - /// Inverse hyperbolic sine function. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let f = x.sinh().asinh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn asinh(self) -> Self; - - /// Inverse hyperbolic cosine function. - /// - /// ``` - /// use num_traits::Float; - /// - /// let x = 1.0; - /// let f = x.cosh().acosh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn acosh(self) -> Self; - - /// Inverse hyperbolic tangent function. - /// - /// ``` - /// use num_traits::Float; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let f = e.tanh().atanh(); - /// - /// let abs_difference = (f - e).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn atanh(self) -> Self; - - /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. - /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. - /// - /// ``` - /// use num_traits::Float; - /// - /// let num = 2.0f32; - /// - /// // (8388608, -22, 1) - /// let (mantissa, exponent, sign) = Float::integer_decode(num); - /// let sign_f = sign as f32; - /// let mantissa_f = mantissa as f32; - /// let exponent_f = num.powf(exponent as f32); - /// - /// // 1 * 8388608 * 2^(-22) == 2 - /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn integer_decode(self) -> (u64, i16, i8); - - /// Returns a number composed of the magnitude of `self` and the sign of - /// `sign`. - /// - /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise - /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of - /// `sign` is returned. - /// - /// # Examples - /// - /// ``` - /// use num_traits::Float; - /// - /// let f = 3.5_f32; - /// - /// assert_eq!(f.copysign(0.42), 3.5_f32); - /// assert_eq!(f.copysign(-0.42), -3.5_f32); - /// assert_eq!((-f).copysign(0.42), 3.5_f32); - /// assert_eq!((-f).copysign(-0.42), -3.5_f32); - /// - /// assert!(f32::nan().copysign(1.0).is_nan()); - /// ``` - fn copysign(self, sign: Self) -> Self { - if self.is_sign_negative() == sign.is_sign_negative() { - self - } else { - self.neg() - } - } -} - -#[cfg(feature = "std")] -macro_rules! float_impl_std { - ($T:ident $decode:ident) => { - impl Float for $T { - constant! { - nan() -> $T::NAN; - infinity() -> $T::INFINITY; - neg_infinity() -> $T::NEG_INFINITY; - neg_zero() -> -0.0; - min_value() -> $T::MIN; - min_positive_value() -> $T::MIN_POSITIVE; - epsilon() -> $T::EPSILON; - max_value() -> $T::MAX; - } - - #[inline] - #[allow(deprecated)] - fn abs_sub(self, other: Self) -> Self { - <$T>::abs_sub(self, other) - } - - #[inline] - fn integer_decode(self) -> (u64, i16, i8) { - $decode(self) - } - - forward! { - Self::is_nan(self) -> bool; - Self::is_infinite(self) -> bool; - Self::is_finite(self) -> bool; - Self::is_normal(self) -> bool; - Self::classify(self) -> FpCategory; - Self::floor(self) -> Self; - Self::ceil(self) -> Self; - Self::round(self) -> Self; - Self::trunc(self) -> Self; - Self::fract(self) -> Self; - Self::abs(self) -> Self; - Self::signum(self) -> Self; - Self::is_sign_positive(self) -> bool; - Self::is_sign_negative(self) -> bool; - Self::mul_add(self, a: Self, b: Self) -> Self; - Self::recip(self) -> Self; - Self::powi(self, n: i32) -> Self; - Self::powf(self, n: Self) -> Self; - Self::sqrt(self) -> Self; - Self::exp(self) -> Self; - Self::exp2(self) -> Self; - Self::ln(self) -> Self; - Self::log(self, base: Self) -> Self; - Self::log2(self) -> Self; - Self::log10(self) -> Self; - Self::to_degrees(self) -> Self; - Self::to_radians(self) -> Self; - Self::max(self, other: Self) -> Self; - Self::min(self, other: Self) -> Self; - Self::cbrt(self) -> Self; - Self::hypot(self, other: Self) -> Self; - Self::sin(self) -> Self; - Self::cos(self) -> Self; - Self::tan(self) -> Self; - Self::asin(self) -> Self; - Self::acos(self) -> Self; - Self::atan(self) -> Self; - Self::atan2(self, other: Self) -> Self; - Self::sin_cos(self) -> (Self, Self); - Self::exp_m1(self) -> Self; - Self::ln_1p(self) -> Self; - Self::sinh(self) -> Self; - Self::cosh(self) -> Self; - Self::tanh(self) -> Self; - Self::asinh(self) -> Self; - Self::acosh(self) -> Self; - Self::atanh(self) -> Self; - } - - #[cfg(has_copysign)] - forward! { - Self::copysign(self, sign: Self) -> Self; - } - - #[cfg(has_is_subnormal)] - forward! { - Self::is_subnormal(self) -> bool; - } - } - }; -} - -#[cfg(all(not(feature = "std"), feature = "libm"))] -macro_rules! float_impl_libm { - ($T:ident $decode:ident) => { - constant! { - nan() -> $T::NAN; - infinity() -> $T::INFINITY; - neg_infinity() -> $T::NEG_INFINITY; - neg_zero() -> -0.0; - min_value() -> $T::MIN; - min_positive_value() -> $T::MIN_POSITIVE; - epsilon() -> $T::EPSILON; - max_value() -> $T::MAX; - } - - #[inline] - fn integer_decode(self) -> (u64, i16, i8) { - $decode(self) - } - - #[inline] - fn fract(self) -> Self { - self - Float::trunc(self) - } - - #[inline] - fn log(self, base: Self) -> Self { - self.ln() / base.ln() - } - - forward! { - Self::is_nan(self) -> bool; - Self::is_infinite(self) -> bool; - Self::is_finite(self) -> bool; - Self::is_normal(self) -> bool; - Self::classify(self) -> FpCategory; - Self::is_sign_positive(self) -> bool; - Self::is_sign_negative(self) -> bool; - Self::min(self, other: Self) -> Self; - Self::max(self, other: Self) -> Self; - Self::recip(self) -> Self; - Self::to_degrees(self) -> Self; - Self::to_radians(self) -> Self; - } - - #[cfg(has_is_subnormal)] - forward! { - Self::is_subnormal(self) -> bool; - } - - forward! { - FloatCore::signum(self) -> Self; - FloatCore::powi(self, n: i32) -> Self; - } - }; -} - -fn integer_decode_f32(f: f32) -> (u64, i16, i8) { - let bits: u32 = f.to_bits(); - let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; - let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; - let mantissa = if exponent == 0 { - (bits & 0x7fffff) << 1 - } else { - (bits & 0x7fffff) | 0x800000 - }; - // Exponent bias + mantissa shift - exponent -= 127 + 23; - (mantissa as u64, exponent, sign) -} - -fn integer_decode_f64(f: f64) -> (u64, i16, i8) { - let bits: u64 = f.to_bits(); - let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; - let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; - let mantissa = if exponent == 0 { - (bits & 0xfffffffffffff) << 1 - } else { - (bits & 0xfffffffffffff) | 0x10000000000000 - }; - // Exponent bias + mantissa shift - exponent -= 1023 + 52; - (mantissa, exponent, sign) -} - -#[cfg(feature = "std")] -float_impl_std!(f32 integer_decode_f32); -#[cfg(feature = "std")] -float_impl_std!(f64 integer_decode_f64); - -#[cfg(all(not(feature = "std"), feature = "libm"))] -impl Float for f32 { - float_impl_libm!(f32 integer_decode_f32); - - #[inline] - #[allow(deprecated)] - fn abs_sub(self, other: Self) -> Self { - libm::fdimf(self, other) - } - - forward! { - libm::floorf as floor(self) -> Self; - libm::ceilf as ceil(self) -> Self; - libm::roundf as round(self) -> Self; - libm::truncf as trunc(self) -> Self; - libm::fabsf as abs(self) -> Self; - libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; - libm::powf as powf(self, n: Self) -> Self; - libm::sqrtf as sqrt(self) -> Self; - libm::expf as exp(self) -> Self; - libm::exp2f as exp2(self) -> Self; - libm::logf as ln(self) -> Self; - libm::log2f as log2(self) -> Self; - libm::log10f as log10(self) -> Self; - libm::cbrtf as cbrt(self) -> Self; - libm::hypotf as hypot(self, other: Self) -> Self; - libm::sinf as sin(self) -> Self; - libm::cosf as cos(self) -> Self; - libm::tanf as tan(self) -> Self; - libm::asinf as asin(self) -> Self; - libm::acosf as acos(self) -> Self; - libm::atanf as atan(self) -> Self; - libm::atan2f as atan2(self, other: Self) -> Self; - libm::sincosf as sin_cos(self) -> (Self, Self); - libm::expm1f as exp_m1(self) -> Self; - libm::log1pf as ln_1p(self) -> Self; - libm::sinhf as sinh(self) -> Self; - libm::coshf as cosh(self) -> Self; - libm::tanhf as tanh(self) -> Self; - libm::asinhf as asinh(self) -> Self; - libm::acoshf as acosh(self) -> Self; - libm::atanhf as atanh(self) -> Self; - libm::copysignf as copysign(self, other: Self) -> Self; - } -} - -#[cfg(all(not(feature = "std"), feature = "libm"))] -impl Float for f64 { - float_impl_libm!(f64 integer_decode_f64); - - #[inline] - #[allow(deprecated)] - fn abs_sub(self, other: Self) -> Self { - libm::fdim(self, other) - } - - forward! { - libm::floor as floor(self) -> Self; - libm::ceil as ceil(self) -> Self; - libm::round as round(self) -> Self; - libm::trunc as trunc(self) -> Self; - libm::fabs as abs(self) -> Self; - libm::fma as mul_add(self, a: Self, b: Self) -> Self; - libm::pow as powf(self, n: Self) -> Self; - libm::sqrt as sqrt(self) -> Self; - libm::exp as exp(self) -> Self; - libm::exp2 as exp2(self) -> Self; - libm::log as ln(self) -> Self; - libm::log2 as log2(self) -> Self; - libm::log10 as log10(self) -> Self; - libm::cbrt as cbrt(self) -> Self; - libm::hypot as hypot(self, other: Self) -> Self; - libm::sin as sin(self) -> Self; - libm::cos as cos(self) -> Self; - libm::tan as tan(self) -> Self; - libm::asin as asin(self) -> Self; - libm::acos as acos(self) -> Self; - libm::atan as atan(self) -> Self; - libm::atan2 as atan2(self, other: Self) -> Self; - libm::sincos as sin_cos(self) -> (Self, Self); - libm::expm1 as exp_m1(self) -> Self; - libm::log1p as ln_1p(self) -> Self; - libm::sinh as sinh(self) -> Self; - libm::cosh as cosh(self) -> Self; - libm::tanh as tanh(self) -> Self; - libm::asinh as asinh(self) -> Self; - libm::acosh as acosh(self) -> Self; - libm::atanh as atanh(self) -> Self; - libm::copysign as copysign(self, sign: Self) -> Self; - } -} - -macro_rules! float_const_impl { - ($(#[$doc:meta] $constant:ident,)+) => ( - #[allow(non_snake_case)] - pub trait FloatConst { - $(#[$doc] fn $constant() -> Self;)+ - #[doc = "Return the full circle constant `τ`."] - #[inline] - fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { - Self::PI() + Self::PI() - } - #[doc = "Return `log10(2.0)`."] - #[inline] - fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { - Self::LN_2() / Self::LN_10() - } - #[doc = "Return `log2(10.0)`."] - #[inline] - fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { - Self::LN_10() / Self::LN_2() - } - } - float_const_impl! { @float f32, $($constant,)+ } - float_const_impl! { @float f64, $($constant,)+ } - ); - (@float $T:ident, $($constant:ident,)+) => ( - impl FloatConst for $T { - constant! { - $( $constant() -> $T::consts::$constant; )+ - TAU() -> 6.28318530717958647692528676655900577; - LOG10_2() -> 0.301029995663981195213738894724493027; - LOG2_10() -> 3.32192809488736234787031942948939018; - } - } - ); -} - -float_const_impl! { - #[doc = "Return Euler’s number."] - E, - #[doc = "Return `1.0 / π`."] - FRAC_1_PI, - #[doc = "Return `1.0 / sqrt(2.0)`."] - FRAC_1_SQRT_2, - #[doc = "Return `2.0 / π`."] - FRAC_2_PI, - #[doc = "Return `2.0 / sqrt(π)`."] - FRAC_2_SQRT_PI, - #[doc = "Return `π / 2.0`."] - FRAC_PI_2, - #[doc = "Return `π / 3.0`."] - FRAC_PI_3, - #[doc = "Return `π / 4.0`."] - FRAC_PI_4, - #[doc = "Return `π / 6.0`."] - FRAC_PI_6, - #[doc = "Return `π / 8.0`."] - FRAC_PI_8, - #[doc = "Return `ln(10.0)`."] - LN_10, - #[doc = "Return `ln(2.0)`."] - LN_2, - #[doc = "Return `log10(e)`."] - LOG10_E, - #[doc = "Return `log2(e)`."] - LOG2_E, - #[doc = "Return Archimedes’ constant `π`."] - PI, - #[doc = "Return `sqrt(2.0)`."] - SQRT_2, -} - -#[cfg(test)] -mod tests { - use core::f64::consts; - - const DEG_RAD_PAIRS: [(f64, f64); 7] = [ - (0.0, 0.), - (22.5, consts::FRAC_PI_8), - (30.0, consts::FRAC_PI_6), - (45.0, consts::FRAC_PI_4), - (60.0, consts::FRAC_PI_3), - (90.0, consts::FRAC_PI_2), - (180.0, consts::PI), - ]; - - #[test] - fn convert_deg_rad() { - use crate::float::FloatCore; - - for &(deg, rad) in &DEG_RAD_PAIRS { - assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); - assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); - - let (deg, rad) = (deg as f32, rad as f32); - assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); - assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); - } - } - - #[cfg(any(feature = "std", feature = "libm"))] - #[test] - fn convert_deg_rad_std() { - for &(deg, rad) in &DEG_RAD_PAIRS { - use crate::Float; - - assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); - assert!((Float::to_radians(deg) - rad).abs() < 1e-6); - - let (deg, rad) = (deg as f32, rad as f32); - assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); - assert!((Float::to_radians(deg) - rad).abs() < 1e-5); - } - } - - #[test] - fn to_degrees_rounding() { - use crate::float::FloatCore; - - assert_eq!( - FloatCore::to_degrees(1_f32), - 57.2957795130823208767981548141051703 - ); - } - - #[test] - #[cfg(any(feature = "std", feature = "libm"))] - fn extra_logs() { - use crate::float::{Float, FloatConst}; - - fn check<F: Float + FloatConst>(diff: F) { - let _2 = F::from(2.0).unwrap(); - assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); - assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); - - let _10 = F::from(10.0).unwrap(); - assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); - assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); - } - - check::<f32>(1e-6); - check::<f64>(1e-12); - } - - #[test] - #[cfg(any(feature = "std", feature = "libm"))] - fn copysign() { - use crate::float::Float; - test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); - test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); - test_copysignf(2.0_f32, -2.0_f32, f32::nan()); - } - - #[cfg(any(feature = "std", feature = "libm"))] - fn test_copysignf(p: f32, n: f32, nan: f32) { - use crate::float::Float; - use core::ops::Neg; - - assert!(p.is_sign_positive()); - assert!(n.is_sign_negative()); - assert!(nan.is_nan()); - - assert_eq!(p, Float::copysign(p, p)); - assert_eq!(p.neg(), Float::copysign(p, n)); - - assert_eq!(n, Float::copysign(n, n)); - assert_eq!(n.neg(), Float::copysign(n, p)); - - assert!(Float::copysign(nan, p).is_sign_positive()); - assert!(Float::copysign(nan, n).is_sign_negative()); - } - - #[cfg(any(feature = "std", feature = "libm"))] - fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { - assert!(p.is_sign_positive()); - assert!(n.is_sign_negative()); - assert!(nan.is_nan()); - assert!(!nan.is_subnormal()); - - assert_eq!(p, p.copysign(p)); - assert_eq!(p.neg(), p.copysign(n)); - - assert_eq!(n, n.copysign(n)); - assert_eq!(n.neg(), n.copysign(p)); - - assert!(nan.copysign(p).is_sign_positive()); - assert!(nan.copysign(n).is_sign_negative()); - } - - #[cfg(any(feature = "std", feature = "libm"))] - fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() { - let min_positive = F::min_positive_value(); - let lower_than_min = min_positive / F::from(2.0f32).unwrap(); - assert!(!min_positive.is_subnormal()); - assert!(lower_than_min.is_subnormal()); - } - - #[test] - #[cfg(any(feature = "std", feature = "libm"))] - fn subnormal() { - test_subnormal::<f64>(); - test_subnormal::<f32>(); - } -} diff --git a/vendor/num-traits/src/identities.rs b/vendor/num-traits/src/identities.rs deleted file mode 100644 index 2486cb1..0000000 --- a/vendor/num-traits/src/identities.rs +++ /dev/null @@ -1,202 +0,0 @@ -use core::num::Wrapping; -use core::ops::{Add, Mul}; - -/// Defines an additive identity element for `Self`. -/// -/// # Laws -/// -/// ```text -/// a + 0 = a ∀ a ∈ Self -/// 0 + a = a ∀ a ∈ Self -/// ``` -pub trait Zero: Sized + Add<Self, Output = Self> { - /// Returns the additive identity element of `Self`, `0`. - /// # Purity - /// - /// This function should return the same result at all times regardless of - /// external mutable state, for example values stored in TLS or in - /// `static mut`s. - // This cannot be an associated constant, because of bignums. - fn zero() -> Self; - - /// Sets `self` to the additive identity element of `Self`, `0`. - fn set_zero(&mut self) { - *self = Zero::zero(); - } - - /// Returns `true` if `self` is equal to the additive identity. - fn is_zero(&self) -> bool; -} - -macro_rules! zero_impl { - ($t:ty, $v:expr) => { - impl Zero for $t { - #[inline] - fn zero() -> $t { - $v - } - #[inline] - fn is_zero(&self) -> bool { - *self == $v - } - } - }; -} - -zero_impl!(usize, 0); -zero_impl!(u8, 0); -zero_impl!(u16, 0); -zero_impl!(u32, 0); -zero_impl!(u64, 0); -zero_impl!(u128, 0); - -zero_impl!(isize, 0); -zero_impl!(i8, 0); -zero_impl!(i16, 0); -zero_impl!(i32, 0); -zero_impl!(i64, 0); -zero_impl!(i128, 0); - -zero_impl!(f32, 0.0); -zero_impl!(f64, 0.0); - -impl<T: Zero> Zero for Wrapping<T> -where - Wrapping<T>: Add<Output = Wrapping<T>>, -{ - fn is_zero(&self) -> bool { - self.0.is_zero() - } - - fn set_zero(&mut self) { - self.0.set_zero(); - } - - fn zero() -> Self { - Wrapping(T::zero()) - } -} - -/// Defines a multiplicative identity element for `Self`. -/// -/// # Laws -/// -/// ```text -/// a * 1 = a ∀ a ∈ Self -/// 1 * a = a ∀ a ∈ Self -/// ``` -pub trait One: Sized + Mul<Self, Output = Self> { - /// Returns the multiplicative identity element of `Self`, `1`. - /// - /// # Purity - /// - /// This function should return the same result at all times regardless of - /// external mutable state, for example values stored in TLS or in - /// `static mut`s. - // This cannot be an associated constant, because of bignums. - fn one() -> Self; - - /// Sets `self` to the multiplicative identity element of `Self`, `1`. - fn set_one(&mut self) { - *self = One::one(); - } - - /// Returns `true` if `self` is equal to the multiplicative identity. - /// - /// For performance reasons, it's best to implement this manually. - /// After a semver bump, this method will be required, and the - /// `where Self: PartialEq` bound will be removed. - #[inline] - fn is_one(&self) -> bool - where - Self: PartialEq, - { - *self == Self::one() - } -} - -macro_rules! one_impl { - ($t:ty, $v:expr) => { - impl One for $t { - #[inline] - fn one() -> $t { - $v - } - #[inline] - fn is_one(&self) -> bool { - *self == $v - } - } - }; -} - -one_impl!(usize, 1); -one_impl!(u8, 1); -one_impl!(u16, 1); -one_impl!(u32, 1); -one_impl!(u64, 1); -one_impl!(u128, 1); - -one_impl!(isize, 1); -one_impl!(i8, 1); -one_impl!(i16, 1); -one_impl!(i32, 1); -one_impl!(i64, 1); -one_impl!(i128, 1); - -one_impl!(f32, 1.0); -one_impl!(f64, 1.0); - -impl<T: One> One for Wrapping<T> -where - Wrapping<T>: Mul<Output = Wrapping<T>>, -{ - fn set_one(&mut self) { - self.0.set_one(); - } - - fn one() -> Self { - Wrapping(T::one()) - } -} - -// Some helper functions provided for backwards compatibility. - -/// Returns the additive identity, `0`. -#[inline(always)] -pub fn zero<T: Zero>() -> T { - Zero::zero() -} - -/// Returns the multiplicative identity, `1`. -#[inline(always)] -pub fn one<T: One>() -> T { - One::one() -} - -#[test] -fn wrapping_identities() { - macro_rules! test_wrapping_identities { - ($($t:ty)+) => { - $( - assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0); - assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0); - assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero()); - assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero()); - )+ - }; - } - - test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64); -} - -#[test] -fn wrapping_is_zero() { - fn require_zero<T: Zero>(_: &T) {} - require_zero(&Wrapping(42)); -} -#[test] -fn wrapping_is_one() { - fn require_one<T: One>(_: &T) {} - require_one(&Wrapping(42)); -} diff --git a/vendor/num-traits/src/int.rs b/vendor/num-traits/src/int.rs deleted file mode 100644 index e3ca72c..0000000 --- a/vendor/num-traits/src/int.rs +++ /dev/null @@ -1,565 +0,0 @@ -use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr}; - -use crate::bounds::Bounded; -use crate::ops::checked::*; -use crate::ops::saturating::Saturating; -use crate::{Num, NumCast}; - -/// Generic trait for primitive integers. -/// -/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`, -/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with -/// bitwise operators and non-wrapping arithmetic. -/// -/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all -/// types implementing this trait behave like primitive types that are passed by value by default -/// and behave like builtin integers. Furthermore, the types are expected to expose the integer -/// value in binary representation and support bitwise operators. The standard bitwise operations -/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends -/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`), -/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g., -/// `PrimInt::to_be()`). -/// -/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried -/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at -/// compile-time. -/// -/// While a default implementation for all builtin primitive integers is provided, the trait is in -/// no way restricted to these. Other integer types that fulfil the requirements are free to -/// implement the trait was well. -/// -/// This trait and many of the method names originate in the unstable `core::num::Int` trait from -/// the rust standard library. The original trait was never stabilized and thus removed from the -/// standard library. -pub trait PrimInt: - Sized - + Copy - + Num - + NumCast - + Bounded - + PartialOrd - + Ord - + Eq - + Not<Output = Self> - + BitAnd<Output = Self> - + BitOr<Output = Self> - + BitXor<Output = Self> - + Shl<usize, Output = Self> - + Shr<usize, Output = Self> - + CheckedAdd<Output = Self> - + CheckedSub<Output = Self> - + CheckedMul<Output = Self> - + CheckedDiv<Output = Self> - + Saturating -{ - /// Returns the number of ones in the binary representation of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b01001100u8; - /// - /// assert_eq!(n.count_ones(), 3); - /// ``` - fn count_ones(self) -> u32; - - /// Returns the number of zeros in the binary representation of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b01001100u8; - /// - /// assert_eq!(n.count_zeros(), 5); - /// ``` - fn count_zeros(self) -> u32; - - /// Returns the number of leading ones in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0xF00Du16; - /// - /// assert_eq!(n.leading_ones(), 4); - /// ``` - fn leading_ones(self) -> u32 { - (!self).leading_zeros() - } - - /// Returns the number of leading zeros in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b0101000u16; - /// - /// assert_eq!(n.leading_zeros(), 10); - /// ``` - fn leading_zeros(self) -> u32; - - /// Returns the number of trailing ones in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0xBEEFu16; - /// - /// assert_eq!(n.trailing_ones(), 4); - /// ``` - fn trailing_ones(self) -> u32 { - (!self).trailing_zeros() - } - - /// Returns the number of trailing zeros in the binary representation - /// of `self`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0b0101000u16; - /// - /// assert_eq!(n.trailing_zeros(), 3); - /// ``` - fn trailing_zeros(self) -> u32; - - /// Shifts the bits to the left by a specified amount, `n`, wrapping - /// the truncated bits to the end of the resulting integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0x3456789ABCDEF012u64; - /// - /// assert_eq!(n.rotate_left(12), m); - /// ``` - fn rotate_left(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount, `n`, wrapping - /// the truncated bits to the beginning of the resulting integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0xDEF0123456789ABCu64; - /// - /// assert_eq!(n.rotate_right(12), m); - /// ``` - fn rotate_right(self, n: u32) -> Self; - - /// Shifts the bits to the left by a specified amount, `n`, filling - /// zeros in the least significant bits. - /// - /// This is bitwise equivalent to signed `Shl`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0x3456789ABCDEF000u64; - /// - /// assert_eq!(n.signed_shl(12), m); - /// ``` - fn signed_shl(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount, `n`, copying - /// the "sign bit" in the most significant bits even for unsigned types. - /// - /// This is bitwise equivalent to signed `Shr`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0xFEDCBA9876543210u64; - /// let m = 0xFFFFEDCBA9876543u64; - /// - /// assert_eq!(n.signed_shr(12), m); - /// ``` - fn signed_shr(self, n: u32) -> Self; - - /// Shifts the bits to the left by a specified amount, `n`, filling - /// zeros in the least significant bits. - /// - /// This is bitwise equivalent to unsigned `Shl`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFi64; - /// let m = 0x3456789ABCDEF000i64; - /// - /// assert_eq!(n.unsigned_shl(12), m); - /// ``` - fn unsigned_shl(self, n: u32) -> Self; - - /// Shifts the bits to the right by a specified amount, `n`, filling - /// zeros in the most significant bits. - /// - /// This is bitwise equivalent to unsigned `Shr`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = -8i8; // 0b11111000 - /// let m = 62i8; // 0b00111110 - /// - /// assert_eq!(n.unsigned_shr(2), m); - /// ``` - fn unsigned_shr(self, n: u32) -> Self; - - /// Reverses the byte order of the integer. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// let m = 0xEFCDAB8967452301u64; - /// - /// assert_eq!(n.swap_bytes(), m); - /// ``` - fn swap_bytes(self) -> Self; - - /// Reverses the order of bits in the integer. - /// - /// The least significant bit becomes the most significant bit, second least-significant bit - /// becomes second most-significant bit, etc. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x12345678u32; - /// let m = 0x1e6a2c48u32; - /// - /// assert_eq!(n.reverse_bits(), m); - /// assert_eq!(0u32.reverse_bits(), 0); - /// ``` - fn reverse_bits(self) -> Self { - reverse_bits_fallback(self) - } - - /// Convert an integer from big endian to the target's endianness. - /// - /// On big endian this is a no-op. On little endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "big") { - /// assert_eq!(u64::from_be(n), n) - /// } else { - /// assert_eq!(u64::from_be(n), n.swap_bytes()) - /// } - /// ``` - fn from_be(x: Self) -> Self; - - /// Convert an integer from little endian to the target's endianness. - /// - /// On little endian this is a no-op. On big endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "little") { - /// assert_eq!(u64::from_le(n), n) - /// } else { - /// assert_eq!(u64::from_le(n), n.swap_bytes()) - /// } - /// ``` - fn from_le(x: Self) -> Self; - - /// Convert `self` to big endian from the target's endianness. - /// - /// On big endian this is a no-op. On little endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "big") { - /// assert_eq!(n.to_be(), n) - /// } else { - /// assert_eq!(n.to_be(), n.swap_bytes()) - /// } - /// ``` - fn to_be(self) -> Self; - - /// Convert `self` to little endian from the target's endianness. - /// - /// On little endian this is a no-op. On big endian the bytes are swapped. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// let n = 0x0123456789ABCDEFu64; - /// - /// if cfg!(target_endian = "little") { - /// assert_eq!(n.to_le(), n) - /// } else { - /// assert_eq!(n.to_le(), n.swap_bytes()) - /// } - /// ``` - fn to_le(self) -> Self; - - /// Raises self to the power of `exp`, using exponentiation by squaring. - /// - /// # Examples - /// - /// ``` - /// use num_traits::PrimInt; - /// - /// assert_eq!(2i32.pow(4), 16); - /// ``` - fn pow(self, exp: u32) -> Self; -} - -fn one_per_byte<P: PrimInt>() -> P { - // i8, u8: return 0x01 - // i16, u16: return 0x0101 = (0x01 << 8) | 0x01 - // i32, u32: return 0x01010101 = (0x0101 << 16) | 0x0101 - // ... - let mut ret = P::one(); - let mut shift = 8; - let mut b = ret.count_zeros() >> 3; - while b != 0 { - ret = (ret << shift) | ret; - shift <<= 1; - b >>= 1; - } - ret -} - -fn reverse_bits_fallback<P: PrimInt>(i: P) -> P { - let rep_01: P = one_per_byte(); - let rep_03 = (rep_01 << 1) | rep_01; - let rep_05 = (rep_01 << 2) | rep_01; - let rep_0f = (rep_03 << 2) | rep_03; - let rep_33 = (rep_03 << 4) | rep_03; - let rep_55 = (rep_05 << 4) | rep_05; - - // code above only used to determine rep_0f, rep_33, rep_55; - // optimizer should be able to do it in compile time - let mut ret = i.swap_bytes(); - ret = ((ret & rep_0f) << 4) | ((ret >> 4) & rep_0f); - ret = ((ret & rep_33) << 2) | ((ret >> 2) & rep_33); - ret = ((ret & rep_55) << 1) | ((ret >> 1) & rep_55); - ret -} - -macro_rules! prim_int_impl { - ($T:ty, $S:ty, $U:ty) => { - impl PrimInt for $T { - #[inline] - fn count_ones(self) -> u32 { - <$T>::count_ones(self) - } - - #[inline] - fn count_zeros(self) -> u32 { - <$T>::count_zeros(self) - } - - #[cfg(has_leading_trailing_ones)] - #[inline] - fn leading_ones(self) -> u32 { - <$T>::leading_ones(self) - } - - #[inline] - fn leading_zeros(self) -> u32 { - <$T>::leading_zeros(self) - } - - #[cfg(has_leading_trailing_ones)] - #[inline] - fn trailing_ones(self) -> u32 { - <$T>::trailing_ones(self) - } - - #[inline] - fn trailing_zeros(self) -> u32 { - <$T>::trailing_zeros(self) - } - - #[inline] - fn rotate_left(self, n: u32) -> Self { - <$T>::rotate_left(self, n) - } - - #[inline] - fn rotate_right(self, n: u32) -> Self { - <$T>::rotate_right(self, n) - } - - #[inline] - fn signed_shl(self, n: u32) -> Self { - ((self as $S) << n) as $T - } - - #[inline] - fn signed_shr(self, n: u32) -> Self { - ((self as $S) >> n) as $T - } - - #[inline] - fn unsigned_shl(self, n: u32) -> Self { - ((self as $U) << n) as $T - } - - #[inline] - fn unsigned_shr(self, n: u32) -> Self { - ((self as $U) >> n) as $T - } - - #[inline] - fn swap_bytes(self) -> Self { - <$T>::swap_bytes(self) - } - - #[cfg(has_reverse_bits)] - #[inline] - fn reverse_bits(self) -> Self { - <$T>::reverse_bits(self) - } - - #[inline] - fn from_be(x: Self) -> Self { - <$T>::from_be(x) - } - - #[inline] - fn from_le(x: Self) -> Self { - <$T>::from_le(x) - } - - #[inline] - fn to_be(self) -> Self { - <$T>::to_be(self) - } - - #[inline] - fn to_le(self) -> Self { - <$T>::to_le(self) - } - - #[inline] - fn pow(self, exp: u32) -> Self { - <$T>::pow(self, exp) - } - } - }; -} - -// prim_int_impl!(type, signed, unsigned); -prim_int_impl!(u8, i8, u8); -prim_int_impl!(u16, i16, u16); -prim_int_impl!(u32, i32, u32); -prim_int_impl!(u64, i64, u64); -prim_int_impl!(u128, i128, u128); -prim_int_impl!(usize, isize, usize); -prim_int_impl!(i8, i8, u8); -prim_int_impl!(i16, i16, u16); -prim_int_impl!(i32, i32, u32); -prim_int_impl!(i64, i64, u64); -prim_int_impl!(i128, i128, u128); -prim_int_impl!(isize, isize, usize); - -#[cfg(test)] -mod tests { - use crate::int::PrimInt; - - #[test] - pub fn reverse_bits() { - use core::{i16, i32, i64, i8}; - - assert_eq!( - PrimInt::reverse_bits(0x0123_4567_89ab_cdefu64), - 0xf7b3_d591_e6a2_c480 - ); - - assert_eq!(PrimInt::reverse_bits(0i8), 0); - assert_eq!(PrimInt::reverse_bits(-1i8), -1); - assert_eq!(PrimInt::reverse_bits(1i8), i8::MIN); - assert_eq!(PrimInt::reverse_bits(i8::MIN), 1); - assert_eq!(PrimInt::reverse_bits(-2i8), i8::MAX); - assert_eq!(PrimInt::reverse_bits(i8::MAX), -2); - - assert_eq!(PrimInt::reverse_bits(0i16), 0); - assert_eq!(PrimInt::reverse_bits(-1i16), -1); - assert_eq!(PrimInt::reverse_bits(1i16), i16::MIN); - assert_eq!(PrimInt::reverse_bits(i16::MIN), 1); - assert_eq!(PrimInt::reverse_bits(-2i16), i16::MAX); - assert_eq!(PrimInt::reverse_bits(i16::MAX), -2); - - assert_eq!(PrimInt::reverse_bits(0i32), 0); - assert_eq!(PrimInt::reverse_bits(-1i32), -1); - assert_eq!(PrimInt::reverse_bits(1i32), i32::MIN); - assert_eq!(PrimInt::reverse_bits(i32::MIN), 1); - assert_eq!(PrimInt::reverse_bits(-2i32), i32::MAX); - assert_eq!(PrimInt::reverse_bits(i32::MAX), -2); - - assert_eq!(PrimInt::reverse_bits(0i64), 0); - assert_eq!(PrimInt::reverse_bits(-1i64), -1); - assert_eq!(PrimInt::reverse_bits(1i64), i64::MIN); - assert_eq!(PrimInt::reverse_bits(i64::MIN), 1); - assert_eq!(PrimInt::reverse_bits(-2i64), i64::MAX); - assert_eq!(PrimInt::reverse_bits(i64::MAX), -2); - } - - #[test] - pub fn reverse_bits_i128() { - use core::i128; - - assert_eq!(PrimInt::reverse_bits(0i128), 0); - assert_eq!(PrimInt::reverse_bits(-1i128), -1); - assert_eq!(PrimInt::reverse_bits(1i128), i128::MIN); - assert_eq!(PrimInt::reverse_bits(i128::MIN), 1); - assert_eq!(PrimInt::reverse_bits(-2i128), i128::MAX); - assert_eq!(PrimInt::reverse_bits(i128::MAX), -2); - } -} diff --git a/vendor/num-traits/src/lib.rs b/vendor/num-traits/src/lib.rs deleted file mode 100644 index 54dab6e..0000000 --- a/vendor/num-traits/src/lib.rs +++ /dev/null @@ -1,635 +0,0 @@ -// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or -// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license -// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Numeric traits for generic mathematics -//! -//! ## Compatibility -//! -//! The `num-traits` crate is tested for rustc 1.31 and greater. - -#![doc(html_root_url = "https://docs.rs/num-traits/0.2")] -#![deny(unconditional_recursion)] -#![no_std] - -// Need to explicitly bring the crate in for inherent float methods -#[cfg(feature = "std")] -extern crate std; - -use core::fmt; -use core::num::Wrapping; -use core::ops::{Add, Div, Mul, Rem, Sub}; -use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; - -pub use crate::bounds::Bounded; -#[cfg(any(feature = "std", feature = "libm"))] -pub use crate::float::Float; -pub use crate::float::FloatConst; -// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`. -pub use crate::cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive}; -pub use crate::identities::{one, zero, One, Zero}; -pub use crate::int::PrimInt; -pub use crate::ops::bytes::{FromBytes, ToBytes}; -pub use crate::ops::checked::{ - CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub, -}; -pub use crate::ops::euclid::{CheckedEuclid, Euclid}; -pub use crate::ops::inv::Inv; -pub use crate::ops::mul_add::{MulAdd, MulAddAssign}; -pub use crate::ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub}; -pub use crate::ops::wrapping::{ - WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub, -}; -pub use crate::pow::{checked_pow, pow, Pow}; -pub use crate::sign::{abs, abs_sub, signum, Signed, Unsigned}; - -#[macro_use] -mod macros; - -pub mod bounds; -pub mod cast; -pub mod float; -pub mod identities; -pub mod int; -pub mod ops; -pub mod pow; -pub mod real; -pub mod sign; - -/// The base trait for numeric types, covering `0` and `1` values, -/// comparisons, basic numeric operations, and string conversion. -pub trait Num: PartialEq + Zero + One + NumOps { - type FromStrRadixErr; - - /// Convert from a string and radix (typically `2..=36`). - /// - /// # Examples - /// - /// ```rust - /// use num_traits::Num; - /// - /// let result = <i32 as Num>::from_str_radix("27", 10); - /// assert_eq!(result, Ok(27)); - /// - /// let result = <i32 as Num>::from_str_radix("foo", 10); - /// assert!(result.is_err()); - /// ``` - /// - /// # Supported radices - /// - /// The exact range of supported radices is at the discretion of each type implementation. For - /// primitive integers, this is implemented by the inherent `from_str_radix` methods in the - /// standard library, which **panic** if the radix is not in the range from 2 to 36. The - /// implementation in this crate for primitive floats is similar. - /// - /// For third-party types, it is suggested that implementations should follow suit and at least - /// accept `2..=36` without panicking, but an `Err` may be returned for any unsupported radix. - /// It's possible that a type might not even support the common radix 10, nor any, if string - /// parsing doesn't make sense for that type. - fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>; -} - -/// Generic trait for types implementing basic numeric operations -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumOps<Rhs = Self, Output = Self>: - Add<Rhs, Output = Output> - + Sub<Rhs, Output = Output> - + Mul<Rhs, Output = Output> - + Div<Rhs, Output = Output> - + Rem<Rhs, Output = Output> -{ -} - -impl<T, Rhs, Output> NumOps<Rhs, Output> for T where - T: Add<Rhs, Output = Output> - + Sub<Rhs, Output = Output> - + Mul<Rhs, Output = Output> - + Div<Rhs, Output = Output> - + Rem<Rhs, Output = Output> -{ -} - -/// The trait for `Num` types which also implement numeric operations taking -/// the second operand by reference. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumRef: Num + for<'r> NumOps<&'r Self> {} -impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {} - -/// The trait for `Num` references which implement numeric operations, taking the -/// second operand either by value or by reference. -/// -/// This is automatically implemented for all types which implement the operators. It covers -/// every type implementing the operations though, regardless of it being a reference or -/// related to `Num`. -pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {} -impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {} - -/// Generic trait for types implementing numeric assignment operators (like `+=`). -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssignOps<Rhs = Self>: - AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs> -{ -} - -impl<T, Rhs> NumAssignOps<Rhs> for T where - T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs> -{ -} - -/// The trait for `Num` types which also implement assignment operators. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssign: Num + NumAssignOps {} -impl<T> NumAssign for T where T: Num + NumAssignOps {} - -/// The trait for `NumAssign` types which also implement assignment operations -/// taking the second operand by reference. -/// -/// This is automatically implemented for types which implement the operators. -pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {} -impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {} - -macro_rules! int_trait_impl { - ($name:ident for $($t:ty)*) => ($( - impl $name for $t { - type FromStrRadixErr = ::core::num::ParseIntError; - #[inline] - fn from_str_radix(s: &str, radix: u32) - -> Result<Self, ::core::num::ParseIntError> - { - <$t>::from_str_radix(s, radix) - } - } - )*) -} -int_trait_impl!(Num for usize u8 u16 u32 u64 u128); -int_trait_impl!(Num for isize i8 i16 i32 i64 i128); - -impl<T: Num> Num for Wrapping<T> -where - Wrapping<T>: NumOps, -{ - type FromStrRadixErr = T::FromStrRadixErr; - fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { - T::from_str_radix(str, radix).map(Wrapping) - } -} - -#[derive(Debug)] -pub enum FloatErrorKind { - Empty, - Invalid, -} -// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us, -// so there's not really any way for us to reuse it. -#[derive(Debug)] -pub struct ParseFloatError { - pub kind: FloatErrorKind, -} - -impl fmt::Display for ParseFloatError { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - let description = match self.kind { - FloatErrorKind::Empty => "cannot parse float from empty string", - FloatErrorKind::Invalid => "invalid float literal", - }; - - description.fmt(f) - } -} - -fn str_to_ascii_lower_eq_str(a: &str, b: &str) -> bool { - a.len() == b.len() - && a.bytes().zip(b.bytes()).all(|(a, b)| { - let a_to_ascii_lower = a | (((b'A' <= a && a <= b'Z') as u8) << 5); - a_to_ascii_lower == b - }) -} - -// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck -// with this implementation ourselves until we want to make a breaking change. -// (would have to drop it from `Num` though) -macro_rules! float_trait_impl { - ($name:ident for $($t:ident)*) => ($( - impl $name for $t { - type FromStrRadixErr = ParseFloatError; - - fn from_str_radix(src: &str, radix: u32) - -> Result<Self, Self::FromStrRadixErr> - { - use self::FloatErrorKind::*; - use self::ParseFloatError as PFE; - - // Special case radix 10 to use more accurate standard library implementation - if radix == 10 { - return src.parse().map_err(|_| PFE { - kind: if src.is_empty() { Empty } else { Invalid }, - }); - } - - // Special values - if str_to_ascii_lower_eq_str(src, "inf") - || str_to_ascii_lower_eq_str(src, "infinity") - { - return Ok(core::$t::INFINITY); - } else if str_to_ascii_lower_eq_str(src, "-inf") - || str_to_ascii_lower_eq_str(src, "-infinity") - { - return Ok(core::$t::NEG_INFINITY); - } else if str_to_ascii_lower_eq_str(src, "nan") { - return Ok(core::$t::NAN); - } else if str_to_ascii_lower_eq_str(src, "-nan") { - return Ok(-core::$t::NAN); - } - - fn slice_shift_char(src: &str) -> Option<(char, &str)> { - let mut chars = src.chars(); - Some((chars.next()?, chars.as_str())) - } - - let (is_positive, src) = match slice_shift_char(src) { - None => return Err(PFE { kind: Empty }), - Some(('-', "")) => return Err(PFE { kind: Empty }), - Some(('-', src)) => (false, src), - Some((_, _)) => (true, src), - }; - - // The significand to accumulate - let mut sig = if is_positive { 0.0 } else { -0.0 }; - // Necessary to detect overflow - let mut prev_sig = sig; - let mut cs = src.chars().enumerate(); - // Exponent prefix and exponent index offset - let mut exp_info = None::<(char, usize)>; - - // Parse the integer part of the significand - for (i, c) in cs.by_ref() { - match c.to_digit(radix) { - Some(digit) => { - // shift significand one digit left - sig *= radix as $t; - - // add/subtract current digit depending on sign - if is_positive { - sig += (digit as isize) as $t; - } else { - sig -= (digit as isize) as $t; - } - - // Detect overflow by comparing to last value, except - // if we've not seen any non-zero digits. - if prev_sig != 0.0 { - if is_positive && sig <= prev_sig - { return Ok(core::$t::INFINITY); } - if !is_positive && sig >= prev_sig - { return Ok(core::$t::NEG_INFINITY); } - - // Detect overflow by reversing the shift-and-add process - if is_positive && (prev_sig != (sig - digit as $t) / radix as $t) - { return Ok(core::$t::INFINITY); } - if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t) - { return Ok(core::$t::NEG_INFINITY); } - } - prev_sig = sig; - }, - None => match c { - 'e' | 'E' | 'p' | 'P' => { - exp_info = Some((c, i + 1)); - break; // start of exponent - }, - '.' => { - break; // start of fractional part - }, - _ => { - return Err(PFE { kind: Invalid }); - }, - }, - } - } - - // If we are not yet at the exponent parse the fractional - // part of the significand - if exp_info.is_none() { - let mut power = 1.0; - for (i, c) in cs.by_ref() { - match c.to_digit(radix) { - Some(digit) => { - // Decrease power one order of magnitude - power /= radix as $t; - // add/subtract current digit depending on sign - sig = if is_positive { - sig + (digit as $t) * power - } else { - sig - (digit as $t) * power - }; - // Detect overflow by comparing to last value - if is_positive && sig < prev_sig - { return Ok(core::$t::INFINITY); } - if !is_positive && sig > prev_sig - { return Ok(core::$t::NEG_INFINITY); } - prev_sig = sig; - }, - None => match c { - 'e' | 'E' | 'p' | 'P' => { - exp_info = Some((c, i + 1)); - break; // start of exponent - }, - _ => { - return Err(PFE { kind: Invalid }); - }, - }, - } - } - } - - // Parse and calculate the exponent - let exp = match exp_info { - Some((c, offset)) => { - let base = match c { - 'E' | 'e' if radix == 10 => 10.0, - 'P' | 'p' if radix == 16 => 2.0, - _ => return Err(PFE { kind: Invalid }), - }; - - // Parse the exponent as decimal integer - let src = &src[offset..]; - let (is_positive, exp) = match slice_shift_char(src) { - Some(('-', src)) => (false, src.parse::<usize>()), - Some(('+', src)) => (true, src.parse::<usize>()), - Some((_, _)) => (true, src.parse::<usize>()), - None => return Err(PFE { kind: Invalid }), - }; - - #[cfg(feature = "std")] - fn pow(base: $t, exp: usize) -> $t { - Float::powi(base, exp as i32) - } - // otherwise uses the generic `pow` from the root - - match (is_positive, exp) { - (true, Ok(exp)) => pow(base, exp), - (false, Ok(exp)) => 1.0 / pow(base, exp), - (_, Err(_)) => return Err(PFE { kind: Invalid }), - } - }, - None => 1.0, // no exponent - }; - - Ok(sig * exp) - } - } - )*) -} -float_trait_impl!(Num for f32 f64); - -/// A value bounded by a minimum and a maximum -/// -/// If input is less than min then this returns min. -/// If input is greater than max then this returns max. -/// Otherwise this returns input. -/// -/// **Panics** in debug mode if `!(min <= max)`. -#[inline] -pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T { - debug_assert!(min <= max, "min must be less than or equal to max"); - if input < min { - min - } else if input > max { - max - } else { - input - } -} - -/// A value bounded by a minimum value -/// -/// If input is less than min then this returns min. -/// Otherwise this returns input. -/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`. -/// -/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.) -#[inline] -#[allow(clippy::eq_op)] -pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T { - debug_assert!(min == min, "min must not be NAN"); - if input < min { - min - } else { - input - } -} - -/// A value bounded by a maximum value -/// -/// If input is greater than max then this returns max. -/// Otherwise this returns input. -/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`. -/// -/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.) -#[inline] -#[allow(clippy::eq_op)] -pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T { - debug_assert!(max == max, "max must not be NAN"); - if input > max { - max - } else { - input - } -} - -#[test] -fn clamp_test() { - // Int test - assert_eq!(1, clamp(1, -1, 2)); - assert_eq!(-1, clamp(-2, -1, 2)); - assert_eq!(2, clamp(3, -1, 2)); - assert_eq!(1, clamp_min(1, -1)); - assert_eq!(-1, clamp_min(-2, -1)); - assert_eq!(-1, clamp_max(1, -1)); - assert_eq!(-2, clamp_max(-2, -1)); - - // Float test - assert_eq!(1.0, clamp(1.0, -1.0, 2.0)); - assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0)); - assert_eq!(2.0, clamp(3.0, -1.0, 2.0)); - assert_eq!(1.0, clamp_min(1.0, -1.0)); - assert_eq!(-1.0, clamp_min(-2.0, -1.0)); - assert_eq!(-1.0, clamp_max(1.0, -1.0)); - assert_eq!(-2.0, clamp_max(-2.0, -1.0)); - assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan()); - assert!(clamp_min(::core::f32::NAN, 1.0).is_nan()); - assert!(clamp_max(::core::f32::NAN, 1.0).is_nan()); -} - -#[test] -#[should_panic] -#[cfg(debug_assertions)] -fn clamp_nan_min() { - clamp(0., ::core::f32::NAN, 1.); -} - -#[test] -#[should_panic] -#[cfg(debug_assertions)] -fn clamp_nan_max() { - clamp(0., -1., ::core::f32::NAN); -} - -#[test] -#[should_panic] -#[cfg(debug_assertions)] -fn clamp_nan_min_max() { - clamp(0., ::core::f32::NAN, ::core::f32::NAN); -} - -#[test] -#[should_panic] -#[cfg(debug_assertions)] -fn clamp_min_nan_min() { - clamp_min(0., ::core::f32::NAN); -} - -#[test] -#[should_panic] -#[cfg(debug_assertions)] -fn clamp_max_nan_max() { - clamp_max(0., ::core::f32::NAN); -} - -#[test] -fn from_str_radix_unwrap() { - // The Result error must impl Debug to allow unwrap() - - let i: i32 = Num::from_str_radix("0", 10).unwrap(); - assert_eq!(i, 0); - - let f: f32 = Num::from_str_radix("0.0", 10).unwrap(); - assert_eq!(f, 0.0); -} - -#[test] -fn from_str_radix_multi_byte_fail() { - // Ensure parsing doesn't panic, even on invalid sign characters - assert!(f32::from_str_radix("™0.2", 10).is_err()); - - // Even when parsing the exponent sign - assert!(f32::from_str_radix("0.2E™1", 10).is_err()); -} - -#[test] -fn from_str_radix_ignore_case() { - assert_eq!( - f32::from_str_radix("InF", 16).unwrap(), - ::core::f32::INFINITY - ); - assert_eq!( - f32::from_str_radix("InfinitY", 16).unwrap(), - ::core::f32::INFINITY - ); - assert_eq!( - f32::from_str_radix("-InF", 8).unwrap(), - ::core::f32::NEG_INFINITY - ); - assert_eq!( - f32::from_str_radix("-InfinitY", 8).unwrap(), - ::core::f32::NEG_INFINITY - ); - assert!(f32::from_str_radix("nAn", 4).unwrap().is_nan()); - assert!(f32::from_str_radix("-nAn", 4).unwrap().is_nan()); -} - -#[test] -fn wrapping_is_num() { - fn require_num<T: Num>(_: &T) {} - require_num(&Wrapping(42_u32)); - require_num(&Wrapping(-42)); -} - -#[test] -fn wrapping_from_str_radix() { - macro_rules! test_wrapping_from_str_radix { - ($($t:ty)+) => { - $( - for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] { - let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0); - assert_eq!(w, <$t as Num>::from_str_radix(s, r)); - } - )+ - }; - } - - test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); -} - -#[test] -fn check_num_ops() { - fn compute<T: Num + Copy>(x: T, y: T) -> T { - x * y / y % y + y - y - } - assert_eq!(compute(1, 2), 1) -} - -#[test] -fn check_numref_ops() { - fn compute<T: NumRef>(x: T, y: &T) -> T { - x * y / y % y + y - y - } - assert_eq!(compute(1, &2), 1) -} - -#[test] -fn check_refnum_ops() { - fn compute<T: Copy>(x: &T, y: T) -> T - where - for<'a> &'a T: RefNum<T>, - { - &(&(&(&(x * y) / y) % y) + y) - y - } - assert_eq!(compute(&1, 2), 1) -} - -#[test] -fn check_refref_ops() { - fn compute<T>(x: &T, y: &T) -> T - where - for<'a> &'a T: RefNum<T>, - { - &(&(&(&(x * y) / y) % y) + y) - y - } - assert_eq!(compute(&1, &2), 1) -} - -#[test] -fn check_numassign_ops() { - fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T { - x *= y; - x /= y; - x %= y; - x += y; - x -= y; - x - } - assert_eq!(compute(1, 2), 1) -} - -#[test] -fn check_numassignref_ops() { - fn compute<T: NumAssignRef + Copy>(mut x: T, y: &T) -> T { - x *= y; - x /= y; - x %= y; - x += y; - x -= y; - x - } - assert_eq!(compute(1, &2), 1) -} diff --git a/vendor/num-traits/src/macros.rs b/vendor/num-traits/src/macros.rs deleted file mode 100644 index b97758e..0000000 --- a/vendor/num-traits/src/macros.rs +++ /dev/null @@ -1,44 +0,0 @@ -// not all are used in all features configurations -#![allow(unused)] - -/// Forward a method to an inherent method or a base trait method. -macro_rules! forward { - ($( Self :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) - => {$( - #[inline] - fn $method(self $( , $arg : $ty )* ) -> $ret { - Self::$method(self $( , $arg )* ) - } - )*}; - ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) - => {$( - #[inline] - fn $method(self $( , $arg : $ty )* ) -> $ret { - <Self as $base>::$method(self $( , $arg )* ) - } - )*}; - ($( $base:ident :: $method:ident ( $( $arg:ident : $ty:ty ),* ) -> $ret:ty ; )*) - => {$( - #[inline] - fn $method( $( $arg : $ty ),* ) -> $ret { - <Self as $base>::$method( $( $arg ),* ) - } - )*}; - ($( $imp:path as $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) - => {$( - #[inline] - fn $method(self $( , $arg : $ty )* ) -> $ret { - $imp(self $( , $arg )* ) - } - )*}; -} - -macro_rules! constant { - ($( $method:ident () -> $ret:expr ; )*) - => {$( - #[inline] - fn $method() -> Self { - $ret - } - )*}; -} diff --git a/vendor/num-traits/src/ops/bytes.rs b/vendor/num-traits/src/ops/bytes.rs deleted file mode 100644 index 4df9ecd..0000000 --- a/vendor/num-traits/src/ops/bytes.rs +++ /dev/null @@ -1,403 +0,0 @@ -use core::borrow::{Borrow, BorrowMut}; -use core::cmp::{Eq, Ord, PartialEq, PartialOrd}; -use core::fmt::Debug; -use core::hash::Hash; -#[cfg(not(has_int_to_from_bytes))] -use core::mem::transmute; - -pub trait NumBytes: - Debug - + AsRef<[u8]> - + AsMut<[u8]> - + PartialEq - + Eq - + PartialOrd - + Ord - + Hash - + Borrow<[u8]> - + BorrowMut<[u8]> -{ -} - -impl<T> NumBytes for T where - T: Debug - + AsRef<[u8]> - + AsMut<[u8]> - + PartialEq - + Eq - + PartialOrd - + Ord - + Hash - + Borrow<[u8]> - + BorrowMut<[u8]> - + ?Sized -{ -} - -pub trait ToBytes { - type Bytes: NumBytes; - - /// Return the memory representation of this number as a byte array in big-endian byte order. - /// - /// # Examples - /// - /// ``` - /// use num_traits::ToBytes; - /// - /// let bytes = ToBytes::to_be_bytes(&0x12345678u32); - /// assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]); - /// ``` - fn to_be_bytes(&self) -> Self::Bytes; - - /// Return the memory representation of this number as a byte array in little-endian byte order. - /// - /// # Examples - /// - /// ``` - /// use num_traits::ToBytes; - /// - /// let bytes = ToBytes::to_le_bytes(&0x12345678u32); - /// assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]); - /// ``` - fn to_le_bytes(&self) -> Self::Bytes; - - /// Return the memory representation of this number as a byte array in native byte order. - /// - /// As the target platform's native endianness is used, - /// portable code should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead. - /// - /// [`to_be_bytes`]: #method.to_be_bytes - /// [`to_le_bytes`]: #method.to_le_bytes - /// - /// # Examples - /// - /// ``` - /// use num_traits::ToBytes; - /// - /// #[cfg(target_endian = "big")] - /// let expected = [0x12, 0x34, 0x56, 0x78]; - /// - /// #[cfg(target_endian = "little")] - /// let expected = [0x78, 0x56, 0x34, 0x12]; - /// - /// let bytes = ToBytes::to_ne_bytes(&0x12345678u32); - /// assert_eq!(bytes, expected) - /// ``` - fn to_ne_bytes(&self) -> Self::Bytes { - #[cfg(target_endian = "big")] - let bytes = self.to_be_bytes(); - #[cfg(target_endian = "little")] - let bytes = self.to_le_bytes(); - bytes - } -} - -pub trait FromBytes: Sized { - type Bytes: NumBytes + ?Sized; - - /// Create a number from its representation as a byte array in big endian. - /// - /// # Examples - /// - /// ``` - /// use num_traits::FromBytes; - /// - /// let value: u32 = FromBytes::from_be_bytes(&[0x12, 0x34, 0x56, 0x78]); - /// assert_eq!(value, 0x12345678); - /// ``` - fn from_be_bytes(bytes: &Self::Bytes) -> Self; - - /// Create a number from its representation as a byte array in little endian. - /// - /// # Examples - /// - /// ``` - /// use num_traits::FromBytes; - /// - /// let value: u32 = FromBytes::from_le_bytes(&[0x78, 0x56, 0x34, 0x12]); - /// assert_eq!(value, 0x12345678); - /// ``` - fn from_le_bytes(bytes: &Self::Bytes) -> Self; - - /// Create a number from its memory representation as a byte array in native endianness. - /// - /// As the target platform's native endianness is used, - /// portable code likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as appropriate instead. - /// - /// [`from_be_bytes`]: #method.from_be_bytes - /// [`from_le_bytes`]: #method.from_le_bytes - /// - /// # Examples - /// - /// ``` - /// use num_traits::FromBytes; - /// - /// #[cfg(target_endian = "big")] - /// let bytes = [0x12, 0x34, 0x56, 0x78]; - /// - /// #[cfg(target_endian = "little")] - /// let bytes = [0x78, 0x56, 0x34, 0x12]; - /// - /// let value: u32 = FromBytes::from_ne_bytes(&bytes); - /// assert_eq!(value, 0x12345678) - /// ``` - fn from_ne_bytes(bytes: &Self::Bytes) -> Self { - #[cfg(target_endian = "big")] - let this = Self::from_be_bytes(bytes); - #[cfg(target_endian = "little")] - let this = Self::from_le_bytes(bytes); - this - } -} - -macro_rules! float_to_from_bytes_impl { - ($T:ty, $L:expr) => { - #[cfg(has_float_to_from_bytes)] - impl ToBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn to_be_bytes(&self) -> Self::Bytes { - <$T>::to_be_bytes(*self) - } - - #[inline] - fn to_le_bytes(&self) -> Self::Bytes { - <$T>::to_le_bytes(*self) - } - - #[inline] - fn to_ne_bytes(&self) -> Self::Bytes { - <$T>::to_ne_bytes(*self) - } - } - - #[cfg(has_float_to_from_bytes)] - impl FromBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn from_be_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_be_bytes(*bytes) - } - - #[inline] - fn from_le_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_le_bytes(*bytes) - } - - #[inline] - fn from_ne_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_ne_bytes(*bytes) - } - } - - #[cfg(not(has_float_to_from_bytes))] - impl ToBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn to_be_bytes(&self) -> Self::Bytes { - ToBytes::to_be_bytes(&self.to_bits()) - } - - #[inline] - fn to_le_bytes(&self) -> Self::Bytes { - ToBytes::to_le_bytes(&self.to_bits()) - } - - #[inline] - fn to_ne_bytes(&self) -> Self::Bytes { - ToBytes::to_ne_bytes(&self.to_bits()) - } - } - - #[cfg(not(has_float_to_from_bytes))] - impl FromBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn from_be_bytes(bytes: &Self::Bytes) -> Self { - Self::from_bits(FromBytes::from_be_bytes(bytes)) - } - - #[inline] - fn from_le_bytes(bytes: &Self::Bytes) -> Self { - Self::from_bits(FromBytes::from_le_bytes(bytes)) - } - - #[inline] - fn from_ne_bytes(bytes: &Self::Bytes) -> Self { - Self::from_bits(FromBytes::from_ne_bytes(bytes)) - } - } - }; -} - -macro_rules! int_to_from_bytes_impl { - ($T:ty, $L:expr) => { - #[cfg(has_int_to_from_bytes)] - impl ToBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn to_be_bytes(&self) -> Self::Bytes { - <$T>::to_be_bytes(*self) - } - - #[inline] - fn to_le_bytes(&self) -> Self::Bytes { - <$T>::to_le_bytes(*self) - } - - #[inline] - fn to_ne_bytes(&self) -> Self::Bytes { - <$T>::to_ne_bytes(*self) - } - } - - #[cfg(has_int_to_from_bytes)] - impl FromBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn from_be_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_be_bytes(*bytes) - } - - #[inline] - fn from_le_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_le_bytes(*bytes) - } - - #[inline] - fn from_ne_bytes(bytes: &Self::Bytes) -> Self { - <$T>::from_ne_bytes(*bytes) - } - } - - #[cfg(not(has_int_to_from_bytes))] - impl ToBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn to_be_bytes(&self) -> Self::Bytes { - <$T as ToBytes>::to_ne_bytes(&<$T>::to_be(*self)) - } - - #[inline] - fn to_le_bytes(&self) -> Self::Bytes { - <$T as ToBytes>::to_ne_bytes(&<$T>::to_le(*self)) - } - - #[inline] - fn to_ne_bytes(&self) -> Self::Bytes { - unsafe { transmute(*self) } - } - } - - #[cfg(not(has_int_to_from_bytes))] - impl FromBytes for $T { - type Bytes = [u8; $L]; - - #[inline] - fn from_be_bytes(bytes: &Self::Bytes) -> Self { - Self::from_be(<Self as FromBytes>::from_ne_bytes(bytes)) - } - - #[inline] - fn from_le_bytes(bytes: &Self::Bytes) -> Self { - Self::from_le(<Self as FromBytes>::from_ne_bytes(bytes)) - } - - #[inline] - fn from_ne_bytes(bytes: &Self::Bytes) -> Self { - unsafe { transmute(*bytes) } - } - } - }; -} - -int_to_from_bytes_impl!(u8, 1); -int_to_from_bytes_impl!(u16, 2); -int_to_from_bytes_impl!(u32, 4); -int_to_from_bytes_impl!(u64, 8); -int_to_from_bytes_impl!(u128, 16); -#[cfg(target_pointer_width = "64")] -int_to_from_bytes_impl!(usize, 8); -#[cfg(target_pointer_width = "32")] -int_to_from_bytes_impl!(usize, 4); - -int_to_from_bytes_impl!(i8, 1); -int_to_from_bytes_impl!(i16, 2); -int_to_from_bytes_impl!(i32, 4); -int_to_from_bytes_impl!(i64, 8); -int_to_from_bytes_impl!(i128, 16); -#[cfg(target_pointer_width = "64")] -int_to_from_bytes_impl!(isize, 8); -#[cfg(target_pointer_width = "32")] -int_to_from_bytes_impl!(isize, 4); - -float_to_from_bytes_impl!(f32, 4); -float_to_from_bytes_impl!(f64, 8); - -#[cfg(test)] -mod tests { - use super::*; - - macro_rules! check_to_from_bytes { - ($( $ty:ty )+) => {$({ - let n = 1; - let be = <$ty as ToBytes>::to_be_bytes(&n); - let le = <$ty as ToBytes>::to_le_bytes(&n); - let ne = <$ty as ToBytes>::to_ne_bytes(&n); - - assert_eq!(*be.last().unwrap(), 1); - assert_eq!(*le.first().unwrap(), 1); - if cfg!(target_endian = "big") { - assert_eq!(*ne.last().unwrap(), 1); - } else { - assert_eq!(*ne.first().unwrap(), 1); - } - - assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n); - assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n); - if cfg!(target_endian = "big") { - assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n); - } else { - assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n); - } - })+} - } - - #[test] - fn convert_between_int_and_bytes() { - check_to_from_bytes!(u8 u16 u32 u64 u128 usize); - check_to_from_bytes!(i8 i16 i32 i64 i128 isize); - } - - #[test] - fn convert_between_float_and_bytes() { - macro_rules! check_to_from_bytes { - ($( $ty:ty )+) => {$( - let n: $ty = 3.14; - - let be = <$ty as ToBytes>::to_be_bytes(&n); - let le = <$ty as ToBytes>::to_le_bytes(&n); - let ne = <$ty as ToBytes>::to_ne_bytes(&n); - - assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n); - assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n); - if cfg!(target_endian = "big") { - assert_eq!(ne, be); - assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n); - } else { - assert_eq!(ne, le); - assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n); - } - )+} - } - - check_to_from_bytes!(f32 f64); - } -} diff --git a/vendor/num-traits/src/ops/checked.rs b/vendor/num-traits/src/ops/checked.rs deleted file mode 100644 index da1eb3e..0000000 --- a/vendor/num-traits/src/ops/checked.rs +++ /dev/null @@ -1,261 +0,0 @@ -use core::ops::{Add, Div, Mul, Rem, Shl, Shr, Sub}; - -/// Performs addition that returns `None` instead of wrapping around on -/// overflow. -pub trait CheckedAdd: Sized + Add<Self, Output = Self> { - /// Adds two numbers, checking for overflow. If overflow happens, `None` is - /// returned. - fn checked_add(&self, v: &Self) -> Option<Self>; -} - -macro_rules! checked_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &$t) -> Option<$t> { - <$t>::$method(*self, *v) - } - } - }; -} - -checked_impl!(CheckedAdd, checked_add, u8); -checked_impl!(CheckedAdd, checked_add, u16); -checked_impl!(CheckedAdd, checked_add, u32); -checked_impl!(CheckedAdd, checked_add, u64); -checked_impl!(CheckedAdd, checked_add, usize); -checked_impl!(CheckedAdd, checked_add, u128); - -checked_impl!(CheckedAdd, checked_add, i8); -checked_impl!(CheckedAdd, checked_add, i16); -checked_impl!(CheckedAdd, checked_add, i32); -checked_impl!(CheckedAdd, checked_add, i64); -checked_impl!(CheckedAdd, checked_add, isize); -checked_impl!(CheckedAdd, checked_add, i128); - -/// Performs subtraction that returns `None` instead of wrapping around on underflow. -pub trait CheckedSub: Sized + Sub<Self, Output = Self> { - /// Subtracts two numbers, checking for underflow. If underflow happens, - /// `None` is returned. - fn checked_sub(&self, v: &Self) -> Option<Self>; -} - -checked_impl!(CheckedSub, checked_sub, u8); -checked_impl!(CheckedSub, checked_sub, u16); -checked_impl!(CheckedSub, checked_sub, u32); -checked_impl!(CheckedSub, checked_sub, u64); -checked_impl!(CheckedSub, checked_sub, usize); -checked_impl!(CheckedSub, checked_sub, u128); - -checked_impl!(CheckedSub, checked_sub, i8); -checked_impl!(CheckedSub, checked_sub, i16); -checked_impl!(CheckedSub, checked_sub, i32); -checked_impl!(CheckedSub, checked_sub, i64); -checked_impl!(CheckedSub, checked_sub, isize); -checked_impl!(CheckedSub, checked_sub, i128); - -/// Performs multiplication that returns `None` instead of wrapping around on underflow or -/// overflow. -pub trait CheckedMul: Sized + Mul<Self, Output = Self> { - /// Multiplies two numbers, checking for underflow or overflow. If underflow - /// or overflow happens, `None` is returned. - fn checked_mul(&self, v: &Self) -> Option<Self>; -} - -checked_impl!(CheckedMul, checked_mul, u8); -checked_impl!(CheckedMul, checked_mul, u16); -checked_impl!(CheckedMul, checked_mul, u32); -checked_impl!(CheckedMul, checked_mul, u64); -checked_impl!(CheckedMul, checked_mul, usize); -checked_impl!(CheckedMul, checked_mul, u128); - -checked_impl!(CheckedMul, checked_mul, i8); -checked_impl!(CheckedMul, checked_mul, i16); -checked_impl!(CheckedMul, checked_mul, i32); -checked_impl!(CheckedMul, checked_mul, i64); -checked_impl!(CheckedMul, checked_mul, isize); -checked_impl!(CheckedMul, checked_mul, i128); - -/// Performs division that returns `None` instead of panicking on division by zero and instead of -/// wrapping around on underflow and overflow. -pub trait CheckedDiv: Sized + Div<Self, Output = Self> { - /// Divides two numbers, checking for underflow, overflow and division by - /// zero. If any of that happens, `None` is returned. - fn checked_div(&self, v: &Self) -> Option<Self>; -} - -checked_impl!(CheckedDiv, checked_div, u8); -checked_impl!(CheckedDiv, checked_div, u16); -checked_impl!(CheckedDiv, checked_div, u32); -checked_impl!(CheckedDiv, checked_div, u64); -checked_impl!(CheckedDiv, checked_div, usize); -checked_impl!(CheckedDiv, checked_div, u128); - -checked_impl!(CheckedDiv, checked_div, i8); -checked_impl!(CheckedDiv, checked_div, i16); -checked_impl!(CheckedDiv, checked_div, i32); -checked_impl!(CheckedDiv, checked_div, i64); -checked_impl!(CheckedDiv, checked_div, isize); -checked_impl!(CheckedDiv, checked_div, i128); - -/// Performs an integral remainder that returns `None` instead of panicking on division by zero and -/// instead of wrapping around on underflow and overflow. -pub trait CheckedRem: Sized + Rem<Self, Output = Self> { - /// Finds the remainder of dividing two numbers, checking for underflow, overflow and division - /// by zero. If any of that happens, `None` is returned. - /// - /// # Examples - /// - /// ``` - /// use num_traits::CheckedRem; - /// use std::i32::MIN; - /// - /// assert_eq!(CheckedRem::checked_rem(&10, &7), Some(3)); - /// assert_eq!(CheckedRem::checked_rem(&10, &-7), Some(3)); - /// assert_eq!(CheckedRem::checked_rem(&-10, &7), Some(-3)); - /// assert_eq!(CheckedRem::checked_rem(&-10, &-7), Some(-3)); - /// - /// assert_eq!(CheckedRem::checked_rem(&10, &0), None); - /// - /// assert_eq!(CheckedRem::checked_rem(&MIN, &1), Some(0)); - /// assert_eq!(CheckedRem::checked_rem(&MIN, &-1), None); - /// ``` - fn checked_rem(&self, v: &Self) -> Option<Self>; -} - -checked_impl!(CheckedRem, checked_rem, u8); -checked_impl!(CheckedRem, checked_rem, u16); -checked_impl!(CheckedRem, checked_rem, u32); -checked_impl!(CheckedRem, checked_rem, u64); -checked_impl!(CheckedRem, checked_rem, usize); -checked_impl!(CheckedRem, checked_rem, u128); - -checked_impl!(CheckedRem, checked_rem, i8); -checked_impl!(CheckedRem, checked_rem, i16); -checked_impl!(CheckedRem, checked_rem, i32); -checked_impl!(CheckedRem, checked_rem, i64); -checked_impl!(CheckedRem, checked_rem, isize); -checked_impl!(CheckedRem, checked_rem, i128); - -macro_rules! checked_impl_unary { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self) -> Option<$t> { - <$t>::$method(*self) - } - } - }; -} - -/// Performs negation that returns `None` if the result can't be represented. -pub trait CheckedNeg: Sized { - /// Negates a number, returning `None` for results that can't be represented, like signed `MIN` - /// values that can't be positive, or non-zero unsigned values that can't be negative. - /// - /// # Examples - /// - /// ``` - /// use num_traits::CheckedNeg; - /// use std::i32::MIN; - /// - /// assert_eq!(CheckedNeg::checked_neg(&1_i32), Some(-1)); - /// assert_eq!(CheckedNeg::checked_neg(&-1_i32), Some(1)); - /// assert_eq!(CheckedNeg::checked_neg(&MIN), None); - /// - /// assert_eq!(CheckedNeg::checked_neg(&0_u32), Some(0)); - /// assert_eq!(CheckedNeg::checked_neg(&1_u32), None); - /// ``` - fn checked_neg(&self) -> Option<Self>; -} - -checked_impl_unary!(CheckedNeg, checked_neg, u8); -checked_impl_unary!(CheckedNeg, checked_neg, u16); -checked_impl_unary!(CheckedNeg, checked_neg, u32); -checked_impl_unary!(CheckedNeg, checked_neg, u64); -checked_impl_unary!(CheckedNeg, checked_neg, usize); -checked_impl_unary!(CheckedNeg, checked_neg, u128); - -checked_impl_unary!(CheckedNeg, checked_neg, i8); -checked_impl_unary!(CheckedNeg, checked_neg, i16); -checked_impl_unary!(CheckedNeg, checked_neg, i32); -checked_impl_unary!(CheckedNeg, checked_neg, i64); -checked_impl_unary!(CheckedNeg, checked_neg, isize); -checked_impl_unary!(CheckedNeg, checked_neg, i128); - -/// Performs a left shift that returns `None` on shifts larger than -/// or equal to the type width. -pub trait CheckedShl: Sized + Shl<u32, Output = Self> { - /// Checked shift left. Computes `self << rhs`, returning `None` - /// if `rhs` is larger than or equal to the number of bits in `self`. - /// - /// ``` - /// use num_traits::CheckedShl; - /// - /// let x: u16 = 0x0001; - /// - /// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001)); - /// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002)); - /// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000)); - /// assert_eq!(CheckedShl::checked_shl(&x, 16), None); - /// ``` - fn checked_shl(&self, rhs: u32) -> Option<Self>; -} - -macro_rules! checked_shift_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, rhs: u32) -> Option<$t> { - <$t>::$method(*self, rhs) - } - } - }; -} - -checked_shift_impl!(CheckedShl, checked_shl, u8); -checked_shift_impl!(CheckedShl, checked_shl, u16); -checked_shift_impl!(CheckedShl, checked_shl, u32); -checked_shift_impl!(CheckedShl, checked_shl, u64); -checked_shift_impl!(CheckedShl, checked_shl, usize); -checked_shift_impl!(CheckedShl, checked_shl, u128); - -checked_shift_impl!(CheckedShl, checked_shl, i8); -checked_shift_impl!(CheckedShl, checked_shl, i16); -checked_shift_impl!(CheckedShl, checked_shl, i32); -checked_shift_impl!(CheckedShl, checked_shl, i64); -checked_shift_impl!(CheckedShl, checked_shl, isize); -checked_shift_impl!(CheckedShl, checked_shl, i128); - -/// Performs a right shift that returns `None` on shifts larger than -/// or equal to the type width. -pub trait CheckedShr: Sized + Shr<u32, Output = Self> { - /// Checked shift right. Computes `self >> rhs`, returning `None` - /// if `rhs` is larger than or equal to the number of bits in `self`. - /// - /// ``` - /// use num_traits::CheckedShr; - /// - /// let x: u16 = 0x8000; - /// - /// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000)); - /// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000)); - /// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001)); - /// assert_eq!(CheckedShr::checked_shr(&x, 16), None); - /// ``` - fn checked_shr(&self, rhs: u32) -> Option<Self>; -} - -checked_shift_impl!(CheckedShr, checked_shr, u8); -checked_shift_impl!(CheckedShr, checked_shr, u16); -checked_shift_impl!(CheckedShr, checked_shr, u32); -checked_shift_impl!(CheckedShr, checked_shr, u64); -checked_shift_impl!(CheckedShr, checked_shr, usize); -checked_shift_impl!(CheckedShr, checked_shr, u128); - -checked_shift_impl!(CheckedShr, checked_shr, i8); -checked_shift_impl!(CheckedShr, checked_shr, i16); -checked_shift_impl!(CheckedShr, checked_shr, i32); -checked_shift_impl!(CheckedShr, checked_shr, i64); -checked_shift_impl!(CheckedShr, checked_shr, isize); -checked_shift_impl!(CheckedShr, checked_shr, i128); diff --git a/vendor/num-traits/src/ops/euclid.rs b/vendor/num-traits/src/ops/euclid.rs deleted file mode 100644 index 4547fee..0000000 --- a/vendor/num-traits/src/ops/euclid.rs +++ /dev/null @@ -1,339 +0,0 @@ -use core::ops::{Div, Rem}; - -pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> { - /// Calculates Euclidean division, the matching method for `rem_euclid`. - /// - /// This computes the integer `n` such that - /// `self = n * v + self.rem_euclid(v)`. - /// In other words, the result is `self / v` rounded to the integer `n` - /// such that `self >= n * v`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::Euclid; - /// - /// let a: i32 = 7; - /// let b: i32 = 4; - /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1 - /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2 - /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1 - /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2 - /// ``` - fn div_euclid(&self, v: &Self) -> Self; - - /// Calculates the least nonnegative remainder of `self (mod v)`. - /// - /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in - /// most cases. However, due to a floating point round-off error it can - /// result in `r == v.abs()`, violating the mathematical definition, if - /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`. - /// This result is not an element of the function's codomain, but it is the - /// closest floating point number in the real numbers and thus fulfills the - /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)` - /// approximatively. - /// - /// # Examples - /// - /// ``` - /// use num_traits::Euclid; - /// - /// let a: i32 = 7; - /// let b: i32 = 4; - /// assert_eq!(Euclid::rem_euclid(&a, &b), 3); - /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1); - /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3); - /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1); - /// ``` - fn rem_euclid(&self, v: &Self) -> Self; -} - -macro_rules! euclid_forward_impl { - ($($t:ty)*) => {$( - #[cfg(has_div_euclid)] - impl Euclid for $t { - #[inline] - fn div_euclid(&self, v: &$t) -> Self { - <$t>::div_euclid(*self, *v) - } - - #[inline] - fn rem_euclid(&self, v: &$t) -> Self { - <$t>::rem_euclid(*self, *v) - } - } - )*} -} - -macro_rules! euclid_int_impl { - ($($t:ty)*) => {$( - euclid_forward_impl!($t); - - #[cfg(not(has_div_euclid))] - impl Euclid for $t { - #[inline] - fn div_euclid(&self, v: &$t) -> Self { - let q = self / v; - if self % v < 0 { - return if *v > 0 { q - 1 } else { q + 1 } - } - q - } - - #[inline] - fn rem_euclid(&self, v: &$t) -> Self { - let r = self % v; - if r < 0 { - if *v < 0 { - r - v - } else { - r + v - } - } else { - r - } - } - } - )*} -} - -macro_rules! euclid_uint_impl { - ($($t:ty)*) => {$( - euclid_forward_impl!($t); - - #[cfg(not(has_div_euclid))] - impl Euclid for $t { - #[inline] - fn div_euclid(&self, v: &$t) -> Self { - self / v - } - - #[inline] - fn rem_euclid(&self, v: &$t) -> Self { - self % v - } - } - )*} -} - -euclid_int_impl!(isize i8 i16 i32 i64 i128); -euclid_uint_impl!(usize u8 u16 u32 u64 u128); - -#[cfg(all(has_div_euclid, feature = "std"))] -euclid_forward_impl!(f32 f64); - -#[cfg(not(all(has_div_euclid, feature = "std")))] -impl Euclid for f32 { - #[inline] - fn div_euclid(&self, v: &f32) -> f32 { - let q = <f32 as crate::float::FloatCore>::trunc(self / v); - if self % v < 0.0 { - return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q - } - - #[inline] - fn rem_euclid(&self, v: &f32) -> f32 { - let r = self % v; - if r < 0.0 { - r + <f32 as crate::float::FloatCore>::abs(*v) - } else { - r - } - } -} - -#[cfg(not(all(has_div_euclid, feature = "std")))] -impl Euclid for f64 { - #[inline] - fn div_euclid(&self, v: &f64) -> f64 { - let q = <f64 as crate::float::FloatCore>::trunc(self / v); - if self % v < 0.0 { - return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; - } - q - } - - #[inline] - fn rem_euclid(&self, v: &f64) -> f64 { - let r = self % v; - if r < 0.0 { - r + <f64 as crate::float::FloatCore>::abs(*v) - } else { - r - } - } -} - -pub trait CheckedEuclid: Euclid { - /// Performs euclid division that returns `None` instead of panicking on division by zero - /// and instead of wrapping around on underflow and overflow. - fn checked_div_euclid(&self, v: &Self) -> Option<Self>; - - /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and - /// division by zero. If any of that happens, `None` is returned. - fn checked_rem_euclid(&self, v: &Self) -> Option<Self>; -} - -macro_rules! checked_euclid_forward_impl { - ($($t:ty)*) => {$( - #[cfg(has_div_euclid)] - impl CheckedEuclid for $t { - #[inline] - fn checked_div_euclid(&self, v: &$t) -> Option<Self> { - <$t>::checked_div_euclid(*self, *v) - } - - #[inline] - fn checked_rem_euclid(&self, v: &$t) -> Option<Self> { - <$t>::checked_rem_euclid(*self, *v) - } - } - )*} -} - -macro_rules! checked_euclid_int_impl { - ($($t:ty)*) => {$( - checked_euclid_forward_impl!($t); - - #[cfg(not(has_div_euclid))] - impl CheckedEuclid for $t { - #[inline] - fn checked_div_euclid(&self, v: &$t) -> Option<$t> { - if *v == 0 || (*self == Self::min_value() && *v == -1) { - None - } else { - Some(Euclid::div_euclid(self, v)) - } - } - - #[inline] - fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { - if *v == 0 || (*self == Self::min_value() && *v == -1) { - None - } else { - Some(Euclid::rem_euclid(self, v)) - } - } - } - )*} -} - -macro_rules! checked_euclid_uint_impl { - ($($t:ty)*) => {$( - checked_euclid_forward_impl!($t); - - #[cfg(not(has_div_euclid))] - impl CheckedEuclid for $t { - #[inline] - fn checked_div_euclid(&self, v: &$t) -> Option<$t> { - if *v == 0 { - None - } else { - Some(Euclid::div_euclid(self, v)) - } - } - - #[inline] - fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { - if *v == 0 { - None - } else { - Some(Euclid::rem_euclid(self, v)) - } - } - } - )*} -} - -checked_euclid_int_impl!(isize i8 i16 i32 i64 i128); -checked_euclid_uint_impl!(usize u8 u16 u32 u64 u128); - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn euclid_unsigned() { - macro_rules! test_euclid { - ($($t:ident)+) => { - $( - { - let x: $t = 10; - let y: $t = 3; - assert_eq!(Euclid::div_euclid(&x, &y), 3); - assert_eq!(Euclid::rem_euclid(&x, &y), 1); - } - )+ - }; - } - - test_euclid!(usize u8 u16 u32 u64); - } - - #[test] - fn euclid_signed() { - macro_rules! test_euclid { - ($($t:ident)+) => { - $( - { - let x: $t = 10; - let y: $t = -3; - assert_eq!(Euclid::div_euclid(&x, &y), -3); - assert_eq!(Euclid::div_euclid(&-x, &y), 4); - assert_eq!(Euclid::rem_euclid(&x, &y), 1); - assert_eq!(Euclid::rem_euclid(&-x, &y), 2); - let x: $t = $t::min_value() + 1; - let y: $t = -1; - assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value()); - } - )+ - }; - } - - test_euclid!(isize i8 i16 i32 i64 i128); - } - - #[test] - fn euclid_float() { - macro_rules! test_euclid { - ($($t:ident)+) => { - $( - { - let x: $t = 12.1; - let y: $t = 3.2; - assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x - <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); - assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x - <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); - assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x - <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); - assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x - <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); - } - )+ - }; - } - - test_euclid!(f32 f64); - } - - #[test] - fn euclid_checked() { - macro_rules! test_euclid_checked { - ($($t:ident)+) => { - $( - { - assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None); - assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None); - assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None); - assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None); - } - )+ - }; - } - - test_euclid_checked!(isize i8 i16 i32 i64 i128); - } -} diff --git a/vendor/num-traits/src/ops/inv.rs b/vendor/num-traits/src/ops/inv.rs deleted file mode 100644 index 7087d09..0000000 --- a/vendor/num-traits/src/ops/inv.rs +++ /dev/null @@ -1,47 +0,0 @@ -/// Unary operator for retrieving the multiplicative inverse, or reciprocal, of a value. -pub trait Inv { - /// The result after applying the operator. - type Output; - - /// Returns the multiplicative inverse of `self`. - /// - /// # Examples - /// - /// ``` - /// use std::f64::INFINITY; - /// use num_traits::Inv; - /// - /// assert_eq!(7.0.inv() * 7.0, 1.0); - /// assert_eq!((-0.0).inv(), -INFINITY); - /// ``` - fn inv(self) -> Self::Output; -} - -impl Inv for f32 { - type Output = f32; - #[inline] - fn inv(self) -> f32 { - 1.0 / self - } -} -impl Inv for f64 { - type Output = f64; - #[inline] - fn inv(self) -> f64 { - 1.0 / self - } -} -impl<'a> Inv for &'a f32 { - type Output = f32; - #[inline] - fn inv(self) -> f32 { - 1.0 / *self - } -} -impl<'a> Inv for &'a f64 { - type Output = f64; - #[inline] - fn inv(self) -> f64 { - 1.0 / *self - } -} diff --git a/vendor/num-traits/src/ops/mod.rs b/vendor/num-traits/src/ops/mod.rs deleted file mode 100644 index 2128d86..0000000 --- a/vendor/num-traits/src/ops/mod.rs +++ /dev/null @@ -1,8 +0,0 @@ -pub mod bytes; -pub mod checked; -pub mod euclid; -pub mod inv; -pub mod mul_add; -pub mod overflowing; -pub mod saturating; -pub mod wrapping; diff --git a/vendor/num-traits/src/ops/mul_add.rs b/vendor/num-traits/src/ops/mul_add.rs deleted file mode 100644 index 51beb55..0000000 --- a/vendor/num-traits/src/ops/mul_add.rs +++ /dev/null @@ -1,149 +0,0 @@ -/// Fused multiply-add. Computes `(self * a) + b` with only one rounding -/// error, yielding a more accurate result than an unfused multiply-add. -/// -/// Using `mul_add` can be more performant than an unfused multiply-add if -/// the target architecture has a dedicated `fma` CPU instruction. -/// -/// Note that `A` and `B` are `Self` by default, but this is not mandatory. -/// -/// # Example -/// -/// ``` -/// use std::f32; -/// -/// let m = 10.0_f32; -/// let x = 4.0_f32; -/// let b = 60.0_f32; -/// -/// // 100.0 -/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); -/// -/// assert!(abs_difference <= 100.0 * f32::EPSILON); -/// ``` -pub trait MulAdd<A = Self, B = Self> { - /// The resulting type after applying the fused multiply-add. - type Output; - - /// Performs the fused multiply-add operation `(self * a) + b` - fn mul_add(self, a: A, b: B) -> Self::Output; -} - -/// The fused multiply-add assignment operation `*self = (*self * a) + b` -pub trait MulAddAssign<A = Self, B = Self> { - /// Performs the fused multiply-add assignment operation `*self = (*self * a) + b` - fn mul_add_assign(&mut self, a: A, b: B); -} - -#[cfg(any(feature = "std", feature = "libm"))] -impl MulAdd<f32, f32> for f32 { - type Output = Self; - - #[inline] - fn mul_add(self, a: Self, b: Self) -> Self::Output { - <Self as crate::Float>::mul_add(self, a, b) - } -} - -#[cfg(any(feature = "std", feature = "libm"))] -impl MulAdd<f64, f64> for f64 { - type Output = Self; - - #[inline] - fn mul_add(self, a: Self, b: Self) -> Self::Output { - <Self as crate::Float>::mul_add(self, a, b) - } -} - -macro_rules! mul_add_impl { - ($trait_name:ident for $($t:ty)*) => {$( - impl $trait_name for $t { - type Output = Self; - - #[inline] - fn mul_add(self, a: Self, b: Self) -> Self::Output { - (self * a) + b - } - } - )*} -} - -mul_add_impl!(MulAdd for isize i8 i16 i32 i64 i128); -mul_add_impl!(MulAdd for usize u8 u16 u32 u64 u128); - -#[cfg(any(feature = "std", feature = "libm"))] -impl MulAddAssign<f32, f32> for f32 { - #[inline] - fn mul_add_assign(&mut self, a: Self, b: Self) { - *self = <Self as crate::Float>::mul_add(*self, a, b) - } -} - -#[cfg(any(feature = "std", feature = "libm"))] -impl MulAddAssign<f64, f64> for f64 { - #[inline] - fn mul_add_assign(&mut self, a: Self, b: Self) { - *self = <Self as crate::Float>::mul_add(*self, a, b) - } -} - -macro_rules! mul_add_assign_impl { - ($trait_name:ident for $($t:ty)*) => {$( - impl $trait_name for $t { - #[inline] - fn mul_add_assign(&mut self, a: Self, b: Self) { - *self = (*self * a) + b - } - } - )*} -} - -mul_add_assign_impl!(MulAddAssign for isize i8 i16 i32 i64 i128); -mul_add_assign_impl!(MulAddAssign for usize u8 u16 u32 u64 u128); - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn mul_add_integer() { - macro_rules! test_mul_add { - ($($t:ident)+) => { - $( - { - let m: $t = 2; - let x: $t = 3; - let b: $t = 4; - - assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b)); - } - )+ - }; - } - - test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64); - } - - #[test] - #[cfg(feature = "std")] - fn mul_add_float() { - macro_rules! test_mul_add { - ($($t:ident)+) => { - $( - { - use core::$t; - - let m: $t = 12.0; - let x: $t = 3.4; - let b: $t = 5.6; - - let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs(); - - assert!(abs_difference <= 46.4 * $t::EPSILON); - } - )+ - }; - } - - test_mul_add!(f32 f64); - } -} diff --git a/vendor/num-traits/src/ops/overflowing.rs b/vendor/num-traits/src/ops/overflowing.rs deleted file mode 100644 index c7a35a5..0000000 --- a/vendor/num-traits/src/ops/overflowing.rs +++ /dev/null @@ -1,96 +0,0 @@ -use core::ops::{Add, Mul, Sub}; -use core::{i128, i16, i32, i64, i8, isize}; -use core::{u128, u16, u32, u64, u8, usize}; - -macro_rules! overflowing_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &Self) -> (Self, bool) { - <$t>::$method(*self, *v) - } - } - }; -} - -/// Performs addition with a flag for overflow. -pub trait OverflowingAdd: Sized + Add<Self, Output = Self> { - /// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur. - /// If an overflow would have occurred then the wrapped value is returned. - fn overflowing_add(&self, v: &Self) -> (Self, bool); -} - -overflowing_impl!(OverflowingAdd, overflowing_add, u8); -overflowing_impl!(OverflowingAdd, overflowing_add, u16); -overflowing_impl!(OverflowingAdd, overflowing_add, u32); -overflowing_impl!(OverflowingAdd, overflowing_add, u64); -overflowing_impl!(OverflowingAdd, overflowing_add, usize); -overflowing_impl!(OverflowingAdd, overflowing_add, u128); - -overflowing_impl!(OverflowingAdd, overflowing_add, i8); -overflowing_impl!(OverflowingAdd, overflowing_add, i16); -overflowing_impl!(OverflowingAdd, overflowing_add, i32); -overflowing_impl!(OverflowingAdd, overflowing_add, i64); -overflowing_impl!(OverflowingAdd, overflowing_add, isize); -overflowing_impl!(OverflowingAdd, overflowing_add, i128); - -/// Performs substraction with a flag for overflow. -pub trait OverflowingSub: Sized + Sub<Self, Output = Self> { - /// Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur. - /// If an overflow would have occurred then the wrapped value is returned. - fn overflowing_sub(&self, v: &Self) -> (Self, bool); -} - -overflowing_impl!(OverflowingSub, overflowing_sub, u8); -overflowing_impl!(OverflowingSub, overflowing_sub, u16); -overflowing_impl!(OverflowingSub, overflowing_sub, u32); -overflowing_impl!(OverflowingSub, overflowing_sub, u64); -overflowing_impl!(OverflowingSub, overflowing_sub, usize); -overflowing_impl!(OverflowingSub, overflowing_sub, u128); - -overflowing_impl!(OverflowingSub, overflowing_sub, i8); -overflowing_impl!(OverflowingSub, overflowing_sub, i16); -overflowing_impl!(OverflowingSub, overflowing_sub, i32); -overflowing_impl!(OverflowingSub, overflowing_sub, i64); -overflowing_impl!(OverflowingSub, overflowing_sub, isize); -overflowing_impl!(OverflowingSub, overflowing_sub, i128); - -/// Performs multiplication with a flag for overflow. -pub trait OverflowingMul: Sized + Mul<Self, Output = Self> { - /// Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur. - /// If an overflow would have occurred then the wrapped value is returned. - fn overflowing_mul(&self, v: &Self) -> (Self, bool); -} - -overflowing_impl!(OverflowingMul, overflowing_mul, u8); -overflowing_impl!(OverflowingMul, overflowing_mul, u16); -overflowing_impl!(OverflowingMul, overflowing_mul, u32); -overflowing_impl!(OverflowingMul, overflowing_mul, u64); -overflowing_impl!(OverflowingMul, overflowing_mul, usize); -overflowing_impl!(OverflowingMul, overflowing_mul, u128); - -overflowing_impl!(OverflowingMul, overflowing_mul, i8); -overflowing_impl!(OverflowingMul, overflowing_mul, i16); -overflowing_impl!(OverflowingMul, overflowing_mul, i32); -overflowing_impl!(OverflowingMul, overflowing_mul, i64); -overflowing_impl!(OverflowingMul, overflowing_mul, isize); -overflowing_impl!(OverflowingMul, overflowing_mul, i128); - -#[test] -fn test_overflowing_traits() { - fn overflowing_add<T: OverflowingAdd>(a: T, b: T) -> (T, bool) { - a.overflowing_add(&b) - } - fn overflowing_sub<T: OverflowingSub>(a: T, b: T) -> (T, bool) { - a.overflowing_sub(&b) - } - fn overflowing_mul<T: OverflowingMul>(a: T, b: T) -> (T, bool) { - a.overflowing_mul(&b) - } - assert_eq!(overflowing_add(5i16, 2), (7, false)); - assert_eq!(overflowing_add(i16::MAX, 1), (i16::MIN, true)); - assert_eq!(overflowing_sub(5i16, 2), (3, false)); - assert_eq!(overflowing_sub(i16::MIN, 1), (i16::MAX, true)); - assert_eq!(overflowing_mul(5i16, 2), (10, false)); - assert_eq!(overflowing_mul(1_000_000_000i32, 10), (1410065408, true)); -} diff --git a/vendor/num-traits/src/ops/saturating.rs b/vendor/num-traits/src/ops/saturating.rs deleted file mode 100644 index 16a0045..0000000 --- a/vendor/num-traits/src/ops/saturating.rs +++ /dev/null @@ -1,130 +0,0 @@ -use core::ops::{Add, Mul, Sub}; - -/// Saturating math operations. Deprecated, use `SaturatingAdd`, `SaturatingSub` and -/// `SaturatingMul` instead. -pub trait Saturating { - /// Saturating addition operator. - /// Returns a+b, saturating at the numeric bounds instead of overflowing. - fn saturating_add(self, v: Self) -> Self; - - /// Saturating subtraction operator. - /// Returns a-b, saturating at the numeric bounds instead of overflowing. - fn saturating_sub(self, v: Self) -> Self; -} - -macro_rules! deprecated_saturating_impl { - ($trait_name:ident for $($t:ty)*) => {$( - impl $trait_name for $t { - #[inline] - fn saturating_add(self, v: Self) -> Self { - Self::saturating_add(self, v) - } - - #[inline] - fn saturating_sub(self, v: Self) -> Self { - Self::saturating_sub(self, v) - } - } - )*} -} - -deprecated_saturating_impl!(Saturating for isize i8 i16 i32 i64 i128); -deprecated_saturating_impl!(Saturating for usize u8 u16 u32 u64 u128); - -macro_rules! saturating_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &Self) -> Self { - <$t>::$method(*self, *v) - } - } - }; -} - -/// Performs addition that saturates at the numeric bounds instead of overflowing. -pub trait SaturatingAdd: Sized + Add<Self, Output = Self> { - /// Saturating addition. Computes `self + other`, saturating at the relevant high or low boundary of - /// the type. - fn saturating_add(&self, v: &Self) -> Self; -} - -saturating_impl!(SaturatingAdd, saturating_add, u8); -saturating_impl!(SaturatingAdd, saturating_add, u16); -saturating_impl!(SaturatingAdd, saturating_add, u32); -saturating_impl!(SaturatingAdd, saturating_add, u64); -saturating_impl!(SaturatingAdd, saturating_add, usize); -saturating_impl!(SaturatingAdd, saturating_add, u128); - -saturating_impl!(SaturatingAdd, saturating_add, i8); -saturating_impl!(SaturatingAdd, saturating_add, i16); -saturating_impl!(SaturatingAdd, saturating_add, i32); -saturating_impl!(SaturatingAdd, saturating_add, i64); -saturating_impl!(SaturatingAdd, saturating_add, isize); -saturating_impl!(SaturatingAdd, saturating_add, i128); - -/// Performs subtraction that saturates at the numeric bounds instead of overflowing. -pub trait SaturatingSub: Sized + Sub<Self, Output = Self> { - /// Saturating subtraction. Computes `self - other`, saturating at the relevant high or low boundary of - /// the type. - fn saturating_sub(&self, v: &Self) -> Self; -} - -saturating_impl!(SaturatingSub, saturating_sub, u8); -saturating_impl!(SaturatingSub, saturating_sub, u16); -saturating_impl!(SaturatingSub, saturating_sub, u32); -saturating_impl!(SaturatingSub, saturating_sub, u64); -saturating_impl!(SaturatingSub, saturating_sub, usize); -saturating_impl!(SaturatingSub, saturating_sub, u128); - -saturating_impl!(SaturatingSub, saturating_sub, i8); -saturating_impl!(SaturatingSub, saturating_sub, i16); -saturating_impl!(SaturatingSub, saturating_sub, i32); -saturating_impl!(SaturatingSub, saturating_sub, i64); -saturating_impl!(SaturatingSub, saturating_sub, isize); -saturating_impl!(SaturatingSub, saturating_sub, i128); - -/// Performs multiplication that saturates at the numeric bounds instead of overflowing. -pub trait SaturatingMul: Sized + Mul<Self, Output = Self> { - /// Saturating multiplication. Computes `self * other`, saturating at the relevant high or low boundary of - /// the type. - fn saturating_mul(&self, v: &Self) -> Self; -} - -saturating_impl!(SaturatingMul, saturating_mul, u8); -saturating_impl!(SaturatingMul, saturating_mul, u16); -saturating_impl!(SaturatingMul, saturating_mul, u32); -saturating_impl!(SaturatingMul, saturating_mul, u64); -saturating_impl!(SaturatingMul, saturating_mul, usize); -saturating_impl!(SaturatingMul, saturating_mul, u128); - -saturating_impl!(SaturatingMul, saturating_mul, i8); -saturating_impl!(SaturatingMul, saturating_mul, i16); -saturating_impl!(SaturatingMul, saturating_mul, i32); -saturating_impl!(SaturatingMul, saturating_mul, i64); -saturating_impl!(SaturatingMul, saturating_mul, isize); -saturating_impl!(SaturatingMul, saturating_mul, i128); - -// TODO: add SaturatingNeg for signed integer primitives once the saturating_neg() API is stable. - -#[test] -fn test_saturating_traits() { - fn saturating_add<T: SaturatingAdd>(a: T, b: T) -> T { - a.saturating_add(&b) - } - fn saturating_sub<T: SaturatingSub>(a: T, b: T) -> T { - a.saturating_sub(&b) - } - fn saturating_mul<T: SaturatingMul>(a: T, b: T) -> T { - a.saturating_mul(&b) - } - assert_eq!(saturating_add(255, 1), 255u8); - assert_eq!(saturating_add(127, 1), 127i8); - assert_eq!(saturating_add(-128, -1), -128i8); - assert_eq!(saturating_sub(0, 1), 0u8); - assert_eq!(saturating_sub(-128, 1), -128i8); - assert_eq!(saturating_sub(127, -1), 127i8); - assert_eq!(saturating_mul(255, 2), 255u8); - assert_eq!(saturating_mul(127, 2), 127i8); - assert_eq!(saturating_mul(-128, 2), -128i8); -} diff --git a/vendor/num-traits/src/ops/wrapping.rs b/vendor/num-traits/src/ops/wrapping.rs deleted file mode 100644 index 3a8b331..0000000 --- a/vendor/num-traits/src/ops/wrapping.rs +++ /dev/null @@ -1,327 +0,0 @@ -use core::num::Wrapping; -use core::ops::{Add, Mul, Neg, Shl, Shr, Sub}; - -macro_rules! wrapping_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, v: &Self) -> Self { - <$t>::$method(*self, *v) - } - } - }; - ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => { - impl $trait_name<$rhs> for $t { - #[inline] - fn $method(&self, v: &$rhs) -> Self { - <$t>::$method(*self, *v) - } - } - }; -} - -/// Performs addition that wraps around on overflow. -pub trait WrappingAdd: Sized + Add<Self, Output = Self> { - /// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of - /// the type. - fn wrapping_add(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingAdd, wrapping_add, u8); -wrapping_impl!(WrappingAdd, wrapping_add, u16); -wrapping_impl!(WrappingAdd, wrapping_add, u32); -wrapping_impl!(WrappingAdd, wrapping_add, u64); -wrapping_impl!(WrappingAdd, wrapping_add, usize); -wrapping_impl!(WrappingAdd, wrapping_add, u128); - -wrapping_impl!(WrappingAdd, wrapping_add, i8); -wrapping_impl!(WrappingAdd, wrapping_add, i16); -wrapping_impl!(WrappingAdd, wrapping_add, i32); -wrapping_impl!(WrappingAdd, wrapping_add, i64); -wrapping_impl!(WrappingAdd, wrapping_add, isize); -wrapping_impl!(WrappingAdd, wrapping_add, i128); - -/// Performs subtraction that wraps around on overflow. -pub trait WrappingSub: Sized + Sub<Self, Output = Self> { - /// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary - /// of the type. - fn wrapping_sub(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingSub, wrapping_sub, u8); -wrapping_impl!(WrappingSub, wrapping_sub, u16); -wrapping_impl!(WrappingSub, wrapping_sub, u32); -wrapping_impl!(WrappingSub, wrapping_sub, u64); -wrapping_impl!(WrappingSub, wrapping_sub, usize); -wrapping_impl!(WrappingSub, wrapping_sub, u128); - -wrapping_impl!(WrappingSub, wrapping_sub, i8); -wrapping_impl!(WrappingSub, wrapping_sub, i16); -wrapping_impl!(WrappingSub, wrapping_sub, i32); -wrapping_impl!(WrappingSub, wrapping_sub, i64); -wrapping_impl!(WrappingSub, wrapping_sub, isize); -wrapping_impl!(WrappingSub, wrapping_sub, i128); - -/// Performs multiplication that wraps around on overflow. -pub trait WrappingMul: Sized + Mul<Self, Output = Self> { - /// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary - /// of the type. - fn wrapping_mul(&self, v: &Self) -> Self; -} - -wrapping_impl!(WrappingMul, wrapping_mul, u8); -wrapping_impl!(WrappingMul, wrapping_mul, u16); -wrapping_impl!(WrappingMul, wrapping_mul, u32); -wrapping_impl!(WrappingMul, wrapping_mul, u64); -wrapping_impl!(WrappingMul, wrapping_mul, usize); -wrapping_impl!(WrappingMul, wrapping_mul, u128); - -wrapping_impl!(WrappingMul, wrapping_mul, i8); -wrapping_impl!(WrappingMul, wrapping_mul, i16); -wrapping_impl!(WrappingMul, wrapping_mul, i32); -wrapping_impl!(WrappingMul, wrapping_mul, i64); -wrapping_impl!(WrappingMul, wrapping_mul, isize); -wrapping_impl!(WrappingMul, wrapping_mul, i128); - -macro_rules! wrapping_unary_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self) -> $t { - <$t>::$method(*self) - } - } - }; -} - -/// Performs a negation that does not panic. -pub trait WrappingNeg: Sized { - /// Wrapping (modular) negation. Computes `-self`, - /// wrapping around at the boundary of the type. - /// - /// Since unsigned types do not have negative equivalents - /// all applications of this function will wrap (except for `-0`). - /// For values smaller than the corresponding signed type's maximum - /// the result is the same as casting the corresponding signed value. - /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where - /// `MAX` is the corresponding signed type's maximum. - /// - /// ``` - /// use num_traits::WrappingNeg; - /// - /// assert_eq!(100i8.wrapping_neg(), -100); - /// assert_eq!((-100i8).wrapping_neg(), 100); - /// assert_eq!((-128i8).wrapping_neg(), -128); // wrapped! - /// ``` - fn wrapping_neg(&self) -> Self; -} - -wrapping_unary_impl!(WrappingNeg, wrapping_neg, u8); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, u16); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, u32); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, u64); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, usize); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, u128); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, i8); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, i16); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, i32); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, i64); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, isize); -wrapping_unary_impl!(WrappingNeg, wrapping_neg, i128); - -macro_rules! wrapping_shift_impl { - ($trait_name:ident, $method:ident, $t:ty) => { - impl $trait_name for $t { - #[inline] - fn $method(&self, rhs: u32) -> $t { - <$t>::$method(*self, rhs) - } - } - }; -} - -/// Performs a left shift that does not panic. -pub trait WrappingShl: Sized + Shl<usize, Output = Self> { - /// Panic-free bitwise shift-left; yields `self << mask(rhs)`, - /// where `mask` removes any high order bits of `rhs` that would - /// cause the shift to exceed the bitwidth of the type. - /// - /// ``` - /// use num_traits::WrappingShl; - /// - /// let x: u16 = 0x0001; - /// - /// assert_eq!(WrappingShl::wrapping_shl(&x, 0), 0x0001); - /// assert_eq!(WrappingShl::wrapping_shl(&x, 1), 0x0002); - /// assert_eq!(WrappingShl::wrapping_shl(&x, 15), 0x8000); - /// assert_eq!(WrappingShl::wrapping_shl(&x, 16), 0x0001); - /// ``` - fn wrapping_shl(&self, rhs: u32) -> Self; -} - -wrapping_shift_impl!(WrappingShl, wrapping_shl, u8); -wrapping_shift_impl!(WrappingShl, wrapping_shl, u16); -wrapping_shift_impl!(WrappingShl, wrapping_shl, u32); -wrapping_shift_impl!(WrappingShl, wrapping_shl, u64); -wrapping_shift_impl!(WrappingShl, wrapping_shl, usize); -wrapping_shift_impl!(WrappingShl, wrapping_shl, u128); - -wrapping_shift_impl!(WrappingShl, wrapping_shl, i8); -wrapping_shift_impl!(WrappingShl, wrapping_shl, i16); -wrapping_shift_impl!(WrappingShl, wrapping_shl, i32); -wrapping_shift_impl!(WrappingShl, wrapping_shl, i64); -wrapping_shift_impl!(WrappingShl, wrapping_shl, isize); -wrapping_shift_impl!(WrappingShl, wrapping_shl, i128); - -/// Performs a right shift that does not panic. -pub trait WrappingShr: Sized + Shr<usize, Output = Self> { - /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, - /// where `mask` removes any high order bits of `rhs` that would - /// cause the shift to exceed the bitwidth of the type. - /// - /// ``` - /// use num_traits::WrappingShr; - /// - /// let x: u16 = 0x8000; - /// - /// assert_eq!(WrappingShr::wrapping_shr(&x, 0), 0x8000); - /// assert_eq!(WrappingShr::wrapping_shr(&x, 1), 0x4000); - /// assert_eq!(WrappingShr::wrapping_shr(&x, 15), 0x0001); - /// assert_eq!(WrappingShr::wrapping_shr(&x, 16), 0x8000); - /// ``` - fn wrapping_shr(&self, rhs: u32) -> Self; -} - -wrapping_shift_impl!(WrappingShr, wrapping_shr, u8); -wrapping_shift_impl!(WrappingShr, wrapping_shr, u16); -wrapping_shift_impl!(WrappingShr, wrapping_shr, u32); -wrapping_shift_impl!(WrappingShr, wrapping_shr, u64); -wrapping_shift_impl!(WrappingShr, wrapping_shr, usize); -wrapping_shift_impl!(WrappingShr, wrapping_shr, u128); - -wrapping_shift_impl!(WrappingShr, wrapping_shr, i8); -wrapping_shift_impl!(WrappingShr, wrapping_shr, i16); -wrapping_shift_impl!(WrappingShr, wrapping_shr, i32); -wrapping_shift_impl!(WrappingShr, wrapping_shr, i64); -wrapping_shift_impl!(WrappingShr, wrapping_shr, isize); -wrapping_shift_impl!(WrappingShr, wrapping_shr, i128); - -// Well this is a bit funny, but all the more appropriate. -impl<T: WrappingAdd> WrappingAdd for Wrapping<T> -where - Wrapping<T>: Add<Output = Wrapping<T>>, -{ - fn wrapping_add(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_add(&v.0)) - } -} -impl<T: WrappingSub> WrappingSub for Wrapping<T> -where - Wrapping<T>: Sub<Output = Wrapping<T>>, -{ - fn wrapping_sub(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_sub(&v.0)) - } -} -impl<T: WrappingMul> WrappingMul for Wrapping<T> -where - Wrapping<T>: Mul<Output = Wrapping<T>>, -{ - fn wrapping_mul(&self, v: &Self) -> Self { - Wrapping(self.0.wrapping_mul(&v.0)) - } -} -impl<T: WrappingNeg> WrappingNeg for Wrapping<T> -where - Wrapping<T>: Neg<Output = Wrapping<T>>, -{ - fn wrapping_neg(&self) -> Self { - Wrapping(self.0.wrapping_neg()) - } -} -impl<T: WrappingShl> WrappingShl for Wrapping<T> -where - Wrapping<T>: Shl<usize, Output = Wrapping<T>>, -{ - fn wrapping_shl(&self, rhs: u32) -> Self { - Wrapping(self.0.wrapping_shl(rhs)) - } -} -impl<T: WrappingShr> WrappingShr for Wrapping<T> -where - Wrapping<T>: Shr<usize, Output = Wrapping<T>>, -{ - fn wrapping_shr(&self, rhs: u32) -> Self { - Wrapping(self.0.wrapping_shr(rhs)) - } -} - -#[test] -fn test_wrapping_traits() { - fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T { - a.wrapping_add(&b) - } - fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T { - a.wrapping_sub(&b) - } - fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T { - a.wrapping_mul(&b) - } - fn wrapping_neg<T: WrappingNeg>(a: T) -> T { - a.wrapping_neg() - } - fn wrapping_shl<T: WrappingShl>(a: T, b: u32) -> T { - a.wrapping_shl(b) - } - fn wrapping_shr<T: WrappingShr>(a: T, b: u32) -> T { - a.wrapping_shr(b) - } - assert_eq!(wrapping_add(255, 1), 0u8); - assert_eq!(wrapping_sub(0, 1), 255u8); - assert_eq!(wrapping_mul(255, 2), 254u8); - assert_eq!(wrapping_neg(255), 1u8); - assert_eq!(wrapping_shl(255, 8), 255u8); - assert_eq!(wrapping_shr(255, 8), 255u8); - assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0); - assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0); - assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0); - assert_eq!(wrapping_neg(255), (-Wrapping(255u8)).0); - assert_eq!(wrapping_shl(255, 8), (Wrapping(255u8) << 8).0); - assert_eq!(wrapping_shr(255, 8), (Wrapping(255u8) >> 8).0); -} - -#[test] -fn wrapping_is_wrappingadd() { - fn require_wrappingadd<T: WrappingAdd>(_: &T) {} - require_wrappingadd(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingsub() { - fn require_wrappingsub<T: WrappingSub>(_: &T) {} - require_wrappingsub(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingmul() { - fn require_wrappingmul<T: WrappingMul>(_: &T) {} - require_wrappingmul(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingneg() { - fn require_wrappingneg<T: WrappingNeg>(_: &T) {} - require_wrappingneg(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingshl() { - fn require_wrappingshl<T: WrappingShl>(_: &T) {} - require_wrappingshl(&Wrapping(42)); -} - -#[test] -fn wrapping_is_wrappingshr() { - fn require_wrappingshr<T: WrappingShr>(_: &T) {} - require_wrappingshr(&Wrapping(42)); -} diff --git a/vendor/num-traits/src/pow.rs b/vendor/num-traits/src/pow.rs deleted file mode 100644 index ef51c95..0000000 --- a/vendor/num-traits/src/pow.rs +++ /dev/null @@ -1,242 +0,0 @@ -use crate::{CheckedMul, One}; -use core::num::Wrapping; -use core::ops::Mul; - -/// Binary operator for raising a value to a power. -pub trait Pow<RHS> { - /// The result after applying the operator. - type Output; - - /// Returns `self` to the power `rhs`. - /// - /// # Examples - /// - /// ``` - /// use num_traits::Pow; - /// assert_eq!(Pow::pow(10u32, 2u32), 100); - /// ``` - fn pow(self, rhs: RHS) -> Self::Output; -} - -macro_rules! pow_impl { - ($t:ty) => { - pow_impl!($t, u8); - pow_impl!($t, usize); - - // FIXME: these should be possible - // pow_impl!($t, u16); - // pow_impl!($t, u32); - // pow_impl!($t, u64); - }; - ($t:ty, $rhs:ty) => { - pow_impl!($t, $rhs, usize, pow); - }; - ($t:ty, $rhs:ty, $desired_rhs:ty, $method:expr) => { - impl Pow<$rhs> for $t { - type Output = $t; - #[inline] - fn pow(self, rhs: $rhs) -> $t { - ($method)(self, <$desired_rhs>::from(rhs)) - } - } - - impl<'a> Pow<&'a $rhs> for $t { - type Output = $t; - #[inline] - fn pow(self, rhs: &'a $rhs) -> $t { - ($method)(self, <$desired_rhs>::from(*rhs)) - } - } - - impl<'a> Pow<$rhs> for &'a $t { - type Output = $t; - #[inline] - fn pow(self, rhs: $rhs) -> $t { - ($method)(*self, <$desired_rhs>::from(rhs)) - } - } - - impl<'a, 'b> Pow<&'a $rhs> for &'b $t { - type Output = $t; - #[inline] - fn pow(self, rhs: &'a $rhs) -> $t { - ($method)(*self, <$desired_rhs>::from(*rhs)) - } - } - }; -} - -pow_impl!(u8, u8, u32, u8::pow); -pow_impl!(u8, u16, u32, u8::pow); -pow_impl!(u8, u32, u32, u8::pow); -pow_impl!(u8, usize); -pow_impl!(i8, u8, u32, i8::pow); -pow_impl!(i8, u16, u32, i8::pow); -pow_impl!(i8, u32, u32, i8::pow); -pow_impl!(i8, usize); -pow_impl!(u16, u8, u32, u16::pow); -pow_impl!(u16, u16, u32, u16::pow); -pow_impl!(u16, u32, u32, u16::pow); -pow_impl!(u16, usize); -pow_impl!(i16, u8, u32, i16::pow); -pow_impl!(i16, u16, u32, i16::pow); -pow_impl!(i16, u32, u32, i16::pow); -pow_impl!(i16, usize); -pow_impl!(u32, u8, u32, u32::pow); -pow_impl!(u32, u16, u32, u32::pow); -pow_impl!(u32, u32, u32, u32::pow); -pow_impl!(u32, usize); -pow_impl!(i32, u8, u32, i32::pow); -pow_impl!(i32, u16, u32, i32::pow); -pow_impl!(i32, u32, u32, i32::pow); -pow_impl!(i32, usize); -pow_impl!(u64, u8, u32, u64::pow); -pow_impl!(u64, u16, u32, u64::pow); -pow_impl!(u64, u32, u32, u64::pow); -pow_impl!(u64, usize); -pow_impl!(i64, u8, u32, i64::pow); -pow_impl!(i64, u16, u32, i64::pow); -pow_impl!(i64, u32, u32, i64::pow); -pow_impl!(i64, usize); - -pow_impl!(u128, u8, u32, u128::pow); -pow_impl!(u128, u16, u32, u128::pow); -pow_impl!(u128, u32, u32, u128::pow); -pow_impl!(u128, usize); - -pow_impl!(i128, u8, u32, i128::pow); -pow_impl!(i128, u16, u32, i128::pow); -pow_impl!(i128, u32, u32, i128::pow); -pow_impl!(i128, usize); - -pow_impl!(usize, u8, u32, usize::pow); -pow_impl!(usize, u16, u32, usize::pow); -pow_impl!(usize, u32, u32, usize::pow); -pow_impl!(usize, usize); -pow_impl!(isize, u8, u32, isize::pow); -pow_impl!(isize, u16, u32, isize::pow); -pow_impl!(isize, u32, u32, isize::pow); -pow_impl!(isize, usize); -pow_impl!(Wrapping<u8>); -pow_impl!(Wrapping<i8>); -pow_impl!(Wrapping<u16>); -pow_impl!(Wrapping<i16>); -pow_impl!(Wrapping<u32>); -pow_impl!(Wrapping<i32>); -pow_impl!(Wrapping<u64>); -pow_impl!(Wrapping<i64>); -pow_impl!(Wrapping<u128>); -pow_impl!(Wrapping<i128>); -pow_impl!(Wrapping<usize>); -pow_impl!(Wrapping<isize>); - -// FIXME: these should be possible -// pow_impl!(u8, u64); -// pow_impl!(i16, u64); -// pow_impl!(i8, u64); -// pow_impl!(u16, u64); -// pow_impl!(u32, u64); -// pow_impl!(i32, u64); -// pow_impl!(u64, u64); -// pow_impl!(i64, u64); -// pow_impl!(usize, u64); -// pow_impl!(isize, u64); - -#[cfg(any(feature = "std", feature = "libm"))] -mod float_impls { - use super::Pow; - use crate::Float; - - pow_impl!(f32, i8, i32, <f32 as Float>::powi); - pow_impl!(f32, u8, i32, <f32 as Float>::powi); - pow_impl!(f32, i16, i32, <f32 as Float>::powi); - pow_impl!(f32, u16, i32, <f32 as Float>::powi); - pow_impl!(f32, i32, i32, <f32 as Float>::powi); - pow_impl!(f64, i8, i32, <f64 as Float>::powi); - pow_impl!(f64, u8, i32, <f64 as Float>::powi); - pow_impl!(f64, i16, i32, <f64 as Float>::powi); - pow_impl!(f64, u16, i32, <f64 as Float>::powi); - pow_impl!(f64, i32, i32, <f64 as Float>::powi); - pow_impl!(f32, f32, f32, <f32 as Float>::powf); - pow_impl!(f64, f32, f64, <f64 as Float>::powf); - pow_impl!(f64, f64, f64, <f64 as Float>::powf); -} - -/// Raises a value to the power of exp, using exponentiation by squaring. -/// -/// Note that `0⁰` (`pow(0, 0)`) returns `1`. Mathematically this is undefined. -/// -/// # Example -/// -/// ```rust -/// use num_traits::pow; -/// -/// assert_eq!(pow(2i8, 4), 16); -/// assert_eq!(pow(6u8, 3), 216); -/// assert_eq!(pow(0u8, 0), 1); // Be aware if this case affects you -/// ``` -#[inline] -pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T { - if exp == 0 { - return T::one(); - } - - while exp & 1 == 0 { - base = base.clone() * base; - exp >>= 1; - } - if exp == 1 { - return base; - } - - let mut acc = base.clone(); - while exp > 1 { - exp >>= 1; - base = base.clone() * base; - if exp & 1 == 1 { - acc = acc * base.clone(); - } - } - acc -} - -/// Raises a value to the power of exp, returning `None` if an overflow occurred. -/// -/// Note that `0⁰` (`checked_pow(0, 0)`) returns `Some(1)`. Mathematically this is undefined. -/// -/// Otherwise same as the `pow` function. -/// -/// # Example -/// -/// ```rust -/// use num_traits::checked_pow; -/// -/// assert_eq!(checked_pow(2i8, 4), Some(16)); -/// assert_eq!(checked_pow(7i8, 8), None); -/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801)); -/// assert_eq!(checked_pow(0u32, 0), Some(1)); // Be aware if this case affect you -/// ``` -#[inline] -pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> { - if exp == 0 { - return Some(T::one()); - } - - while exp & 1 == 0 { - base = base.checked_mul(&base)?; - exp >>= 1; - } - if exp == 1 { - return Some(base); - } - - let mut acc = base.clone(); - while exp > 1 { - exp >>= 1; - base = base.checked_mul(&base)?; - if exp & 1 == 1 { - acc = acc.checked_mul(&base)?; - } - } - Some(acc) -} diff --git a/vendor/num-traits/src/real.rs b/vendor/num-traits/src/real.rs deleted file mode 100644 index d4feee0..0000000 --- a/vendor/num-traits/src/real.rs +++ /dev/null @@ -1,834 +0,0 @@ -#![cfg(any(feature = "std", feature = "libm"))] - -use core::ops::Neg; - -use crate::{Float, Num, NumCast}; - -// NOTE: These doctests have the same issue as those in src/float.rs. -// They're testing the inherent methods directly, and not those of `Real`. - -/// A trait for real number types that do not necessarily have -/// floating-point-specific characteristics such as NaN and infinity. -/// -/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type) -/// for a list of data types that could meaningfully implement this trait. -/// -/// This trait is only available with the `std` feature, or with the `libm` feature otherwise. -pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { - /// Returns the smallest finite value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::min_value(); - /// - /// assert_eq!(x, f64::MIN); - /// ``` - fn min_value() -> Self; - - /// Returns the smallest positive, normalized value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::min_positive_value(); - /// - /// assert_eq!(x, f64::MIN_POSITIVE); - /// ``` - fn min_positive_value() -> Self; - - /// Returns epsilon, a small positive value. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::epsilon(); - /// - /// assert_eq!(x, f64::EPSILON); - /// ``` - /// - /// # Panics - /// - /// The default implementation will panic if `f32::EPSILON` cannot - /// be cast to `Self`. - fn epsilon() -> Self; - - /// Returns the largest finite value that this type can represent. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x: f64 = Real::max_value(); - /// assert_eq!(x, f64::MAX); - /// ``` - fn max_value() -> Self; - - /// Returns the largest integer less than or equal to a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.99; - /// let g = 3.0; - /// - /// assert_eq!(f.floor(), 3.0); - /// assert_eq!(g.floor(), 3.0); - /// ``` - fn floor(self) -> Self; - - /// Returns the smallest integer greater than or equal to a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.01; - /// let g = 4.0; - /// - /// assert_eq!(f.ceil(), 4.0); - /// assert_eq!(g.ceil(), 4.0); - /// ``` - fn ceil(self) -> Self; - - /// Returns the nearest integer to a number. Round half-way cases away from - /// `0.0`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.3; - /// let g = -3.3; - /// - /// assert_eq!(f.round(), 3.0); - /// assert_eq!(g.round(), -3.0); - /// ``` - fn round(self) -> Self; - - /// Return the integer part of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 3.3; - /// let g = -3.7; - /// - /// assert_eq!(f.trunc(), 3.0); - /// assert_eq!(g.trunc(), -3.0); - /// ``` - fn trunc(self) -> Self; - - /// Returns the fractional part of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 3.5; - /// let y = -3.5; - /// let abs_difference_x = (x.fract() - 0.5).abs(); - /// let abs_difference_y = (y.fract() - (-0.5)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn fract(self) -> Self; - - /// Computes the absolute value of `self`. Returns `Float::nan()` if the - /// number is `Float::nan()`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = 3.5; - /// let y = -3.5; - /// - /// let abs_difference_x = (x.abs() - x).abs(); - /// let abs_difference_y = (y.abs() - (-y)).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// - /// assert!(::num_traits::Float::is_nan(f64::NAN.abs())); - /// ``` - fn abs(self) -> Self; - - /// Returns a number that represents the sign of `self`. - /// - /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` - /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` - /// - `Float::nan()` if the number is `Float::nan()` - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = 3.5; - /// - /// assert_eq!(f.signum(), 1.0); - /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); - /// - /// assert!(f64::NAN.signum().is_nan()); - /// ``` - fn signum(self) -> Self; - - /// Returns `true` if `self` is positive, including `+0.0`, - /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let neg_nan: f64 = -f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(f.is_sign_positive()); - /// assert!(!g.is_sign_positive()); - /// assert!(!neg_nan.is_sign_positive()); - /// ``` - fn is_sign_positive(self) -> bool; - - /// Returns `true` if `self` is negative, including `-0.0`, - /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let nan: f64 = f64::NAN; - /// - /// let f = 7.0; - /// let g = -7.0; - /// - /// assert!(!f.is_sign_negative()); - /// assert!(g.is_sign_negative()); - /// assert!(!nan.is_sign_negative()); - /// ``` - fn is_sign_negative(self) -> bool; - - /// Fused multiply-add. Computes `(self * a) + b` with only one rounding - /// error, yielding a more accurate result than an unfused multiply-add. - /// - /// Using `mul_add` can be more performant than an unfused multiply-add if - /// the target architecture has a dedicated `fma` CPU instruction. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let m = 10.0; - /// let x = 4.0; - /// let b = 60.0; - /// - /// // 100.0 - /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn mul_add(self, a: Self, b: Self) -> Self; - - /// Take the reciprocal (inverse) of a number, `1/x`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.recip() - (1.0/x)).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn recip(self) -> Self; - - /// Raise a number to an integer power. - /// - /// Using this function is generally faster than using `powf` - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.powi(2) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powi(self, n: i32) -> Self; - - /// Raise a number to a real number power. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let abs_difference = (x.powf(2.0) - x*x).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn powf(self, n: Self) -> Self; - - /// Take the square root of a number. - /// - /// Returns NaN if `self` is a negative floating-point number. - /// - /// # Panics - /// - /// If the implementing type doesn't support NaN, this method should panic if `self < 0`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let positive = 4.0; - /// let negative = -4.0; - /// - /// let abs_difference = (positive.sqrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// assert!(::num_traits::Float::is_nan(negative.sqrt())); - /// ``` - fn sqrt(self) -> Self; - - /// Returns `e^(self)`, (the exponential function). - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp(self) -> Self; - - /// Returns `2^(self)`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 2.0; - /// - /// // 2^2 - 4 == 0 - /// let abs_difference = (f.exp2() - 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp2(self) -> Self; - - /// Returns the natural logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let one = 1.0; - /// // e^1 - /// let e = one.exp(); - /// - /// // ln(e) - 1 == 0 - /// let abs_difference = (e.ln() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln(self) -> Self; - - /// Returns the logarithm of the number with respect to an arbitrary base. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let ten = 10.0; - /// let two = 2.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); - /// - /// // log2(2) - 1 == 0 - /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); - /// - /// assert!(abs_difference_10 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn log(self, base: Self) -> Self; - - /// Returns the base 2 logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let two = 2.0; - /// - /// // log2(2) - 1 == 0 - /// let abs_difference = (two.log2() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log2(self) -> Self; - - /// Returns the base 10 logarithm of the number. - /// - /// # Panics - /// - /// If `self <= 0` and this type does not support a NaN representation, this function should panic. - /// - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let ten = 10.0; - /// - /// // log10(10) - 1 == 0 - /// let abs_difference = (ten.log10() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn log10(self) -> Self; - - /// Converts radians to degrees. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = consts::PI; - /// - /// let abs_difference = (angle.to_degrees() - 180.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn to_degrees(self) -> Self; - - /// Converts degrees to radians. - /// - /// ``` - /// use std::f64::consts; - /// - /// let angle = 180.0_f64; - /// - /// let abs_difference = (angle.to_radians() - consts::PI).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn to_radians(self) -> Self; - - /// Returns the maximum of the two numbers. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.max(y), y); - /// ``` - fn max(self, other: Self) -> Self; - - /// Returns the minimum of the two numbers. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let y = 2.0; - /// - /// assert_eq!(x.min(y), x); - /// ``` - fn min(self, other: Self) -> Self; - - /// The positive difference of two numbers. - /// - /// * If `self <= other`: `0:0` - /// * Else: `self - other` - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 3.0; - /// let y = -3.0; - /// - /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); - /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); - /// - /// assert!(abs_difference_x < 1e-10); - /// assert!(abs_difference_y < 1e-10); - /// ``` - fn abs_sub(self, other: Self) -> Self; - - /// Take the cubic root of a number. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 8.0; - /// - /// // x^(1/3) - 2 == 0 - /// let abs_difference = (x.cbrt() - 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cbrt(self) -> Self; - - /// Calculate the length of the hypotenuse of a right-angle triangle given - /// legs of length `x` and `y`. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 2.0; - /// let y = 3.0; - /// - /// // sqrt(x^2 + y^2) - /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn hypot(self, other: Self) -> Self; - - /// Computes the sine of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/2.0; - /// - /// let abs_difference = (x.sin() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sin(self) -> Self; - - /// Computes the cosine of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = 2.0*f64::consts::PI; - /// - /// let abs_difference = (x.cos() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn cos(self) -> Self; - - /// Computes the tangent of a number (in radians). - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let abs_difference = (x.tan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-14); - /// ``` - fn tan(self) -> Self; - - /// Computes the arcsine of a number. Return value is in radians in - /// the range [-pi/2, pi/2] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if the number is outside the range [-1, 1]. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = f64::consts::PI / 2.0; - /// - /// // asin(sin(pi/2)) - /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn asin(self) -> Self; - - /// Computes the arccosine of a number. Return value is in radians in - /// the range [0, pi] or NaN if the number is outside the range - /// [-1, 1]. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if the number is outside the range [-1, 1]. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let f = f64::consts::PI / 4.0; - /// - /// // acos(cos(pi/4)) - /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn acos(self) -> Self; - - /// Computes the arctangent of a number. Return value is in radians in the - /// range [-pi/2, pi/2]; - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let f = 1.0; - /// - /// // atan(tan(1)) - /// let abs_difference = (f.tan().atan() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn atan(self) -> Self; - - /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). - /// - /// * `x = 0`, `y = 0`: `0` - /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` - /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` - /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let pi = f64::consts::PI; - /// // All angles from horizontal right (+x) - /// // 45 deg counter-clockwise - /// let x1 = 3.0; - /// let y1 = -3.0; - /// - /// // 135 deg clockwise - /// let x2 = -3.0; - /// let y2 = 3.0; - /// - /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); - /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); - /// - /// assert!(abs_difference_1 < 1e-10); - /// assert!(abs_difference_2 < 1e-10); - /// ``` - fn atan2(self, other: Self) -> Self; - - /// Simultaneously computes the sine and cosine of the number, `x`. Returns - /// `(sin(x), cos(x))`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::PI/4.0; - /// let f = x.sin_cos(); - /// - /// let abs_difference_0 = (f.0 - x.sin()).abs(); - /// let abs_difference_1 = (f.1 - x.cos()).abs(); - /// - /// assert!(abs_difference_0 < 1e-10); - /// assert!(abs_difference_0 < 1e-10); - /// ``` - fn sin_cos(self) -> (Self, Self); - - /// Returns `e^(self) - 1` in a way that is accurate even if the - /// number is close to zero. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 7.0; - /// - /// // e^(ln(7)) - 1 - /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn exp_m1(self) -> Self; - - /// Returns `ln(1+n)` (natural logarithm) more accurately than if - /// the operations were performed separately. - /// - /// # Panics - /// - /// If this type does not support a NaN representation, this function should panic - /// if `self-1 <= 0`. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let x = f64::consts::E - 1.0; - /// - /// // ln(1 + (e - 1)) == ln(e) == 1 - /// let abs_difference = (x.ln_1p() - 1.0).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn ln_1p(self) -> Self; - - /// Hyperbolic sine function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.sinh(); - /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` - /// let g = (e*e - 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1e-10); - /// ``` - fn sinh(self) -> Self; - - /// Hyperbolic cosine function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// let f = x.cosh(); - /// // Solving cosh() at 1 gives this result - /// let g = (e*e + 1.0)/(2.0*e); - /// let abs_difference = (f - g).abs(); - /// - /// // Same result - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn cosh(self) -> Self; - - /// Hyperbolic tangent function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let x = 1.0; - /// - /// let f = x.tanh(); - /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` - /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); - /// let abs_difference = (f - g).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn tanh(self) -> Self; - - /// Inverse hyperbolic sine function. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let f = x.sinh().asinh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn asinh(self) -> Self; - - /// Inverse hyperbolic cosine function. - /// - /// ``` - /// use num_traits::real::Real; - /// - /// let x = 1.0; - /// let f = x.cosh().acosh(); - /// - /// let abs_difference = (f - x).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn acosh(self) -> Self; - - /// Inverse hyperbolic tangent function. - /// - /// ``` - /// use num_traits::real::Real; - /// use std::f64; - /// - /// let e = f64::consts::E; - /// let f = e.tanh().atanh(); - /// - /// let abs_difference = (f - e).abs(); - /// - /// assert!(abs_difference < 1.0e-10); - /// ``` - fn atanh(self) -> Self; -} - -impl<T: Float> Real for T { - forward! { - Float::min_value() -> Self; - Float::min_positive_value() -> Self; - Float::epsilon() -> Self; - Float::max_value() -> Self; - } - forward! { - Float::floor(self) -> Self; - Float::ceil(self) -> Self; - Float::round(self) -> Self; - Float::trunc(self) -> Self; - Float::fract(self) -> Self; - Float::abs(self) -> Self; - Float::signum(self) -> Self; - Float::is_sign_positive(self) -> bool; - Float::is_sign_negative(self) -> bool; - Float::mul_add(self, a: Self, b: Self) -> Self; - Float::recip(self) -> Self; - Float::powi(self, n: i32) -> Self; - Float::powf(self, n: Self) -> Self; - Float::sqrt(self) -> Self; - Float::exp(self) -> Self; - Float::exp2(self) -> Self; - Float::ln(self) -> Self; - Float::log(self, base: Self) -> Self; - Float::log2(self) -> Self; - Float::log10(self) -> Self; - Float::to_degrees(self) -> Self; - Float::to_radians(self) -> Self; - Float::max(self, other: Self) -> Self; - Float::min(self, other: Self) -> Self; - Float::abs_sub(self, other: Self) -> Self; - Float::cbrt(self) -> Self; - Float::hypot(self, other: Self) -> Self; - Float::sin(self) -> Self; - Float::cos(self) -> Self; - Float::tan(self) -> Self; - Float::asin(self) -> Self; - Float::acos(self) -> Self; - Float::atan(self) -> Self; - Float::atan2(self, other: Self) -> Self; - Float::sin_cos(self) -> (Self, Self); - Float::exp_m1(self) -> Self; - Float::ln_1p(self) -> Self; - Float::sinh(self) -> Self; - Float::cosh(self) -> Self; - Float::tanh(self) -> Self; - Float::asinh(self) -> Self; - Float::acosh(self) -> Self; - Float::atanh(self) -> Self; - } -} diff --git a/vendor/num-traits/src/sign.rs b/vendor/num-traits/src/sign.rs deleted file mode 100644 index a0d6b0f..0000000 --- a/vendor/num-traits/src/sign.rs +++ /dev/null @@ -1,216 +0,0 @@ -use core::num::Wrapping; -use core::ops::Neg; - -use crate::float::FloatCore; -use crate::Num; - -/// Useful functions for signed numbers (i.e. numbers that can be negative). -pub trait Signed: Sized + Num + Neg<Output = Self> { - /// Computes the absolute value. - /// - /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`. - /// - /// For signed integers, `::MIN` will be returned if the number is `::MIN`. - fn abs(&self) -> Self; - - /// The positive difference of two numbers. - /// - /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference - /// between `self` and `other` is returned. - fn abs_sub(&self, other: &Self) -> Self; - - /// Returns the sign of the number. - /// - /// For `f32` and `f64`: - /// - /// * `1.0` if the number is positive, `+0.0` or `INFINITY` - /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` - /// * `NaN` if the number is `NaN` - /// - /// For signed integers: - /// - /// * `0` if the number is zero - /// * `1` if the number is positive - /// * `-1` if the number is negative - fn signum(&self) -> Self; - - /// Returns true if the number is positive and false if the number is zero or negative. - fn is_positive(&self) -> bool; - - /// Returns true if the number is negative and false if the number is zero or positive. - fn is_negative(&self) -> bool; -} - -macro_rules! signed_impl { - ($($t:ty)*) => ($( - impl Signed for $t { - #[inline] - fn abs(&self) -> $t { - if self.is_negative() { -*self } else { *self } - } - - #[inline] - fn abs_sub(&self, other: &$t) -> $t { - if *self <= *other { 0 } else { *self - *other } - } - - #[inline] - fn signum(&self) -> $t { - match *self { - n if n > 0 => 1, - 0 => 0, - _ => -1, - } - } - - #[inline] - fn is_positive(&self) -> bool { *self > 0 } - - #[inline] - fn is_negative(&self) -> bool { *self < 0 } - } - )*) -} - -signed_impl!(isize i8 i16 i32 i64 i128); - -impl<T: Signed> Signed for Wrapping<T> -where - Wrapping<T>: Num + Neg<Output = Wrapping<T>>, -{ - #[inline] - fn abs(&self) -> Self { - Wrapping(self.0.abs()) - } - - #[inline] - fn abs_sub(&self, other: &Self) -> Self { - Wrapping(self.0.abs_sub(&other.0)) - } - - #[inline] - fn signum(&self) -> Self { - Wrapping(self.0.signum()) - } - - #[inline] - fn is_positive(&self) -> bool { - self.0.is_positive() - } - - #[inline] - fn is_negative(&self) -> bool { - self.0.is_negative() - } -} - -macro_rules! signed_float_impl { - ($t:ty) => { - impl Signed for $t { - /// Computes the absolute value. Returns `NAN` if the number is `NAN`. - #[inline] - fn abs(&self) -> $t { - FloatCore::abs(*self) - } - - /// The positive difference of two numbers. Returns `0.0` if the number is - /// less than or equal to `other`, otherwise the difference between`self` - /// and `other` is returned. - #[inline] - fn abs_sub(&self, other: &$t) -> $t { - if *self <= *other { - 0. - } else { - *self - *other - } - } - - /// # Returns - /// - /// - `1.0` if the number is positive, `+0.0` or `INFINITY` - /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` - /// - `NAN` if the number is NaN - #[inline] - fn signum(&self) -> $t { - FloatCore::signum(*self) - } - - /// Returns `true` if the number is positive, including `+0.0` and `INFINITY` - #[inline] - fn is_positive(&self) -> bool { - FloatCore::is_sign_positive(*self) - } - - /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY` - #[inline] - fn is_negative(&self) -> bool { - FloatCore::is_sign_negative(*self) - } - } - }; -} - -signed_float_impl!(f32); -signed_float_impl!(f64); - -/// Computes the absolute value. -/// -/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN` -/// -/// For signed integers, `::MIN` will be returned if the number is `::MIN`. -#[inline(always)] -pub fn abs<T: Signed>(value: T) -> T { - value.abs() -} - -/// The positive difference of two numbers. -/// -/// Returns zero if `x` is less than or equal to `y`, otherwise the difference -/// between `x` and `y` is returned. -#[inline(always)] -pub fn abs_sub<T: Signed>(x: T, y: T) -> T { - x.abs_sub(&y) -} - -/// Returns the sign of the number. -/// -/// For `f32` and `f64`: -/// -/// * `1.0` if the number is positive, `+0.0` or `INFINITY` -/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` -/// * `NaN` if the number is `NaN` -/// -/// For signed integers: -/// -/// * `0` if the number is zero -/// * `1` if the number is positive -/// * `-1` if the number is negative -#[inline(always)] -pub fn signum<T: Signed>(value: T) -> T { - value.signum() -} - -/// A trait for values which cannot be negative -pub trait Unsigned: Num {} - -macro_rules! empty_trait_impl { - ($name:ident for $($t:ty)*) => ($( - impl $name for $t {} - )*) -} - -empty_trait_impl!(Unsigned for usize u8 u16 u32 u64 u128); - -impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {} - -#[test] -fn unsigned_wrapping_is_unsigned() { - fn require_unsigned<T: Unsigned>(_: &T) {} - require_unsigned(&Wrapping(42_u32)); -} - -#[test] -fn signed_wrapping_is_signed() { - fn require_signed<T: Signed>(_: &T) {} - require_signed(&Wrapping(-42)); -} |