diff options
author | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
---|---|---|
committer | Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> | 2021-03-04 20:54:23 +0300 |
commit | e8701195e66f2d27ffe17fb514eae8173795aaf7 (patch) | |
tree | 9f519c4abf6556b9ae7190a6210d87ead1dfadde /Marlin/src/core | |
download | kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.tar.xz kp3s-lgvl-e8701195e66f2d27ffe17fb514eae8173795aaf7.zip |
Initial commit
Diffstat (limited to 'Marlin/src/core')
-rw-r--r-- | Marlin/src/core/boards.h | 419 | ||||
-rw-r--r-- | Marlin/src/core/debug_out.h | 121 | ||||
-rw-r--r-- | Marlin/src/core/debug_section.h | 49 | ||||
-rw-r--r-- | Marlin/src/core/drivers.h | 197 | ||||
-rw-r--r-- | Marlin/src/core/language.h | 408 | ||||
-rw-r--r-- | Marlin/src/core/macros.h | 545 | ||||
-rw-r--r-- | Marlin/src/core/millis_t.h | 33 | ||||
-rw-r--r-- | Marlin/src/core/multi_language.h | 86 | ||||
-rw-r--r-- | Marlin/src/core/serial.cpp | 93 | ||||
-rw-r--r-- | Marlin/src/core/serial.h | 335 | ||||
-rw-r--r-- | Marlin/src/core/serial_base.h | 159 | ||||
-rw-r--r-- | Marlin/src/core/serial_hook.h | 235 | ||||
-rw-r--r-- | Marlin/src/core/types.h | 503 | ||||
-rw-r--r-- | Marlin/src/core/utility.cpp | 177 | ||||
-rw-r--r-- | Marlin/src/core/utility.h | 79 |
15 files changed, 3439 insertions, 0 deletions
diff --git a/Marlin/src/core/boards.h b/Marlin/src/core/boards.h new file mode 100644 index 0000000..afb6887 --- /dev/null +++ b/Marlin/src/core/boards.h @@ -0,0 +1,419 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "macros.h" + +#define BOARD_UNKNOWN -1 + +// +// RAMPS 1.3 / 1.4 - ATmega1280, ATmega2560 +// + +#define BOARD_RAMPS_OLD 1000 // MEGA/RAMPS up to 1.2 + +#define BOARD_RAMPS_13_EFB 1010 // RAMPS 1.3 (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_13_EEB 1011 // RAMPS 1.3 (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_13_EFF 1012 // RAMPS 1.3 (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_13_EEF 1013 // RAMPS 1.3 (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_13_SF 1014 // RAMPS 1.3 (Power outputs: Spindle, Controller Fan) + +#define BOARD_RAMPS_14_EFB 1020 // RAMPS 1.4 (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_14_EEB 1021 // RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_14_EFF 1022 // RAMPS 1.4 (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_14_EEF 1023 // RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_14_SF 1024 // RAMPS 1.4 (Power outputs: Spindle, Controller Fan) + +#define BOARD_RAMPS_PLUS_EFB 1030 // RAMPS Plus 3DYMY (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_PLUS_EEB 1031 // RAMPS Plus 3DYMY (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_PLUS_EFF 1032 // RAMPS Plus 3DYMY (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_PLUS_EEF 1033 // RAMPS Plus 3DYMY (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_PLUS_SF 1034 // RAMPS Plus 3DYMY (Power outputs: Spindle, Controller Fan) + +// +// RAMPS Derivatives - ATmega1280, ATmega2560 +// + +#define BOARD_3DRAG 1100 // 3Drag Controller +#define BOARD_K8200 1101 // Velleman K8200 Controller (derived from 3Drag Controller) +#define BOARD_K8400 1102 // Velleman K8400 Controller (derived from 3Drag Controller) +#define BOARD_K8600 1103 // Velleman K8600 Controller (Vertex Nano) +#define BOARD_K8800 1104 // Velleman K8800 Controller (Vertex Delta) +#define BOARD_BAM_DICE 1105 // 2PrintBeta BAM&DICE with STK drivers +#define BOARD_BAM_DICE_DUE 1106 // 2PrintBeta BAM&DICE Due with STK drivers +#define BOARD_MKS_BASE 1107 // MKS BASE v1.0 +#define BOARD_MKS_BASE_14 1108 // MKS BASE v1.4 with Allegro A4982 stepper drivers +#define BOARD_MKS_BASE_15 1109 // MKS BASE v1.5 with Allegro A4982 stepper drivers +#define BOARD_MKS_BASE_16 1110 // MKS BASE v1.6 with Allegro A4982 stepper drivers +#define BOARD_MKS_BASE_HEROIC 1111 // MKS BASE 1.0 with Heroic HR4982 stepper drivers +#define BOARD_MKS_GEN_13 1112 // MKS GEN v1.3 or 1.4 +#define BOARD_MKS_GEN_L 1113 // MKS GEN L +#define BOARD_KFB_2 1114 // BigTreeTech or BIQU KFB2.0 +#define BOARD_ZRIB_V20 1115 // zrib V2.0 control board (Chinese knock off RAMPS replica) +#define BOARD_ZRIB_V52 1116 // zrib V5.2 control board (Chinese knock off RAMPS replica) +#define BOARD_FELIX2 1117 // Felix 2.0+ Electronics Board (RAMPS like) +#define BOARD_RIGIDBOARD 1118 // Invent-A-Part RigidBoard +#define BOARD_RIGIDBOARD_V2 1119 // Invent-A-Part RigidBoard V2 +#define BOARD_SAINSMART_2IN1 1120 // Sainsmart 2-in-1 board +#define BOARD_ULTIMAKER 1121 // Ultimaker +#define BOARD_ULTIMAKER_OLD 1122 // Ultimaker (Older electronics. Pre 1.5.4. This is rare) +#define BOARD_AZTEEG_X3 1123 // Azteeg X3 +#define BOARD_AZTEEG_X3_PRO 1124 // Azteeg X3 Pro +#define BOARD_ULTIMAIN_2 1125 // Ultimainboard 2.x (Uses TEMP_SENSOR 20) +#define BOARD_RUMBA 1126 // Rumba +#define BOARD_RUMBA_RAISE3D 1127 // Raise3D N series Rumba derivative +#define BOARD_RL200 1128 // Rapide Lite 200 (v1, low-cost RUMBA clone with drv) +#define BOARD_FORMBOT_TREX2PLUS 1129 // Formbot T-Rex 2 Plus +#define BOARD_FORMBOT_TREX3 1130 // Formbot T-Rex 3 +#define BOARD_FORMBOT_RAPTOR 1131 // Formbot Raptor +#define BOARD_FORMBOT_RAPTOR2 1132 // Formbot Raptor 2 +#define BOARD_BQ_ZUM_MEGA_3D 1133 // bq ZUM Mega 3D +#define BOARD_MAKEBOARD_MINI 1134 // MakeBoard Mini v2.1.2 is a control board sold by MicroMake +#define BOARD_TRIGORILLA_13 1135 // TriGorilla Anycubic version 1.3-based on RAMPS EFB +#define BOARD_TRIGORILLA_14 1136 // ... Ver 1.4 +#define BOARD_TRIGORILLA_14_11 1137 // ... Rev 1.1 (new servo pin order) +#define BOARD_RAMPS_ENDER_4 1138 // Creality: Ender-4, CR-8 +#define BOARD_RAMPS_CREALITY 1139 // Creality: CR10S, CR20, CR-X +#define BOARD_DAGOMA_F5 1140 // Dagoma F5 +#define BOARD_FYSETC_F6_13 1141 // FYSETC F6 1.3 +#define BOARD_FYSETC_F6_14 1142 // FYSETC F6 1.4 +#define BOARD_DUPLICATOR_I3_PLUS 1143 // Wanhao Duplicator i3 Plus +#define BOARD_VORON 1144 // VORON Design +#define BOARD_TRONXY_V3_1_0 1145 // Tronxy TRONXY-V3-1.0 +#define BOARD_Z_BOLT_X_SERIES 1146 // Z-Bolt X Series +#define BOARD_TT_OSCAR 1147 // TT OSCAR +#define BOARD_OVERLORD 1148 // Overlord/Overlord Pro +#define BOARD_HJC2560C_REV1 1149 // ADIMLab Gantry v1 +#define BOARD_HJC2560C_REV2 1150 // ADIMLab Gantry v2 +#define BOARD_TANGO 1151 // BIQU Tango V1 +#define BOARD_MKS_GEN_L_V2 1152 // MKS GEN L V2 +#define BOARD_MKS_GEN_L_V21 1153 // MKS GEN L V2.1 +#define BOARD_COPYMASTER_3D 1154 // Copymaster 3D +#define BOARD_ORTUR_4 1155 // Ortur 4 +#define BOARD_TENLOG_D3_HERO 1156 // Tenlog D3 Hero IDEX printer +#define BOARD_RAMPS_S_12_EEFB 1157 // Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Fan, Bed) +#define BOARD_RAMPS_S_12_EEEB 1158 // Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Hotend2, Bed) +#define BOARD_RAMPS_S_12_EFFB 1159 // Ramps S 1.2 by Sakul.cz (Power outputs: Hotend, Fan0, Fan1, Bed) +#define BOARD_LONGER3D_LK1_PRO 1160 // Longer LK1 PRO / Alfawise U20 Pro (PRO version) +#define BOARD_LONGER3D_LKx_PRO 1161 // Longer LKx PRO / Alfawise Uxx Pro (PRO version) + +// +// RAMBo and derivatives +// + +#define BOARD_RAMBO 1200 // Rambo +#define BOARD_MINIRAMBO 1201 // Mini-Rambo +#define BOARD_MINIRAMBO_10A 1202 // Mini-Rambo 1.0a +#define BOARD_EINSY_RAMBO 1203 // Einsy Rambo +#define BOARD_EINSY_RETRO 1204 // Einsy Retro +#define BOARD_SCOOVO_X9H 1205 // abee Scoovo X9H + +// +// Other ATmega1280, ATmega2560 +// + +#define BOARD_CNCONTROLS_11 1300 // Cartesio CN Controls V11 +#define BOARD_CNCONTROLS_12 1301 // Cartesio CN Controls V12 +#define BOARD_CNCONTROLS_15 1302 // Cartesio CN Controls V15 +#define BOARD_CHEAPTRONIC 1303 // Cheaptronic v1.0 +#define BOARD_CHEAPTRONIC_V2 1304 // Cheaptronic v2.0 +#define BOARD_MIGHTYBOARD_REVE 1305 // Makerbot Mightyboard Revision E +#define BOARD_MEGATRONICS 1306 // Megatronics +#define BOARD_MEGATRONICS_2 1307 // Megatronics v2.0 +#define BOARD_MEGATRONICS_3 1308 // Megatronics v3.0 +#define BOARD_MEGATRONICS_31 1309 // Megatronics v3.1 +#define BOARD_MEGATRONICS_32 1310 // Megatronics v3.2 +#define BOARD_ELEFU_3 1311 // Elefu Ra Board (v3) +#define BOARD_LEAPFROG 1312 // Leapfrog +#define BOARD_MEGACONTROLLER 1313 // Mega controller +#define BOARD_GT2560_REV_A 1314 // Geeetech GT2560 Rev. A +#define BOARD_GT2560_REV_A_PLUS 1315 // Geeetech GT2560 Rev. A+ (with auto level probe) +#define BOARD_GT2560_V3 1316 // Geeetech GT2560 Rev B for A10(M/D) +#define BOARD_GT2560_V3_MC2 1317 // Geeetech GT2560 Rev B for Mecreator2 +#define BOARD_GT2560_V3_A20 1318 // Geeetech GT2560 Rev B for A20(M/D) +#define BOARD_EINSTART_S 1319 // Einstart retrofit +#define BOARD_WANHAO_ONEPLUS 1320 // Wanhao 0ne+ i3 Mini +#define BOARD_LEAPFROG_XEED2015 1321 // Leapfrog Xeed 2015 +#define BOARD_PICA_REVB 1322 // PICA Shield (original version) +#define BOARD_PICA 1323 // PICA Shield (rev C or later) +#define BOARD_INTAMSYS40 1324 // Intamsys 4.0 (Funmat HT) + +// +// ATmega1281, ATmega2561 +// + +#define BOARD_MINITRONICS 1400 // Minitronics v1.0/1.1 +#define BOARD_SILVER_GATE 1401 // Silvergate v1.0 + +// +// Sanguinololu and Derivatives - ATmega644P, ATmega1284P +// + +#define BOARD_SANGUINOLOLU_11 1500 // Sanguinololu < 1.2 +#define BOARD_SANGUINOLOLU_12 1501 // Sanguinololu 1.2 and above +#define BOARD_MELZI 1502 // Melzi +#define BOARD_MELZI_V2 1503 // Melzi V2 +#define BOARD_MELZI_MAKR3D 1504 // Melzi with ATmega1284 (MaKr3d version) +#define BOARD_MELZI_CREALITY 1505 // Melzi Creality3D board (for CR-10 etc) +#define BOARD_MELZI_MALYAN 1506 // Melzi Malyan M150 board +#define BOARD_MELZI_TRONXY 1507 // Tronxy X5S +#define BOARD_STB_11 1508 // STB V1.1 +#define BOARD_AZTEEG_X1 1509 // Azteeg X1 +#define BOARD_ANET_10 1510 // Anet 1.0 (Melzi clone) +#define BOARD_ZMIB_V2 1511 // ZoneStar ZMIB V2 + +// +// Other ATmega644P, ATmega644, ATmega1284P +// + +#define BOARD_GEN3_MONOLITHIC 1600 // Gen3 Monolithic Electronics +#define BOARD_GEN3_PLUS 1601 // Gen3+ +#define BOARD_GEN6 1602 // Gen6 +#define BOARD_GEN6_DELUXE 1603 // Gen6 deluxe +#define BOARD_GEN7_CUSTOM 1604 // Gen7 custom (Alfons3 Version) https://github.com/Alfons3/Generation_7_Electronics +#define BOARD_GEN7_12 1605 // Gen7 v1.1, v1.2 +#define BOARD_GEN7_13 1606 // Gen7 v1.3 +#define BOARD_GEN7_14 1607 // Gen7 v1.4 +#define BOARD_OMCA_A 1608 // Alpha OMCA board +#define BOARD_OMCA 1609 // Final OMCA board +#define BOARD_SETHI 1610 // Sethi 3D_1 + +// +// Teensyduino - AT90USB1286, AT90USB1286P +// + +#define BOARD_TEENSYLU 1700 // Teensylu +#define BOARD_PRINTRBOARD 1701 // Printrboard (AT90USB1286) +#define BOARD_PRINTRBOARD_REVF 1702 // Printrboard Revision F (AT90USB1286) +#define BOARD_BRAINWAVE 1703 // Brainwave (AT90USB646) +#define BOARD_BRAINWAVE_PRO 1704 // Brainwave Pro (AT90USB1286) +#define BOARD_SAV_MKI 1705 // SAV Mk-I (AT90USB1286) +#define BOARD_TEENSY2 1706 // Teensy++2.0 (AT90USB1286) +#define BOARD_5DPRINT 1707 // 5DPrint D8 Driver Board + +// +// LPC1768 ARM Cortex M3 +// + +#define BOARD_RAMPS_14_RE_ARM_EFB 2000 // Re-ARM with RAMPS 1.4 (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_14_RE_ARM_EEB 2001 // Re-ARM with RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_14_RE_ARM_EFF 2002 // Re-ARM with RAMPS 1.4 (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_14_RE_ARM_EEF 2003 // Re-ARM with RAMPS 1.4 (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_14_RE_ARM_SF 2004 // Re-ARM with RAMPS 1.4 (Power outputs: Spindle, Controller Fan) +#define BOARD_MKS_SBASE 2005 // MKS-Sbase (Power outputs: Hotend0, Hotend1, Bed, Fan) +#define BOARD_AZSMZ_MINI 2006 // AZSMZ Mini +#define BOARD_BIQU_BQ111_A4 2007 // BIQU BQ111-A4 (Power outputs: Hotend, Fan, Bed) +#define BOARD_SELENA_COMPACT 2008 // Selena Compact (Power outputs: Hotend0, Hotend1, Bed0, Bed1, Fan0, Fan1) +#define BOARD_BIQU_B300_V1_0 2009 // BIQU B300_V1.0 (Power outputs: Hotend0, Fan, Bed, SPI Driver) +#define BOARD_MKS_SGEN_L 2010 // MKS-SGen-L (Power outputs: Hotend0, Hotend1, Bed, Fan) +#define BOARD_GMARSH_X6_REV1 2011 // GMARSH X6 board, revision 1 prototype +#define BOARD_BTT_SKR_V1_1 2012 // BigTreeTech SKR v1.1 (Power outputs: Hotend0, Hotend1, Fan, Bed) +#define BOARD_BTT_SKR_V1_3 2013 // BigTreeTech SKR v1.3 (Power outputs: Hotend0, Hotend1, Fan, Bed) +#define BOARD_BTT_SKR_V1_4 2014 // BigTreeTech SKR v1.4 (Power outputs: Hotend0, Hotend1, Fan, Bed) + +// +// LPC1769 ARM Cortex M3 +// + +#define BOARD_MKS_SGEN 2500 // MKS-SGen (Power outputs: Hotend0, Hotend1, Bed, Fan) +#define BOARD_AZTEEG_X5_GT 2501 // Azteeg X5 GT (Power outputs: Hotend0, Hotend1, Bed, Fan) +#define BOARD_AZTEEG_X5_MINI 2502 // Azteeg X5 Mini (Power outputs: Hotend0, Bed, Fan) +#define BOARD_AZTEEG_X5_MINI_WIFI 2503 // Azteeg X5 Mini Wifi (Power outputs: Hotend0, Bed, Fan) +#define BOARD_COHESION3D_REMIX 2504 // Cohesion3D ReMix +#define BOARD_COHESION3D_MINI 2505 // Cohesion3D Mini +#define BOARD_SMOOTHIEBOARD 2506 // Smoothieboard +#define BOARD_TH3D_EZBOARD 2507 // TH3D EZBoard v1.0 +#define BOARD_BTT_SKR_V1_4_TURBO 2508 // BigTreeTech SKR v1.4 TURBO (Power outputs: Hotend0, Hotend1, Fan, Bed) +#define BOARD_MKS_SGEN_L_V2 2509 // MKS SGEN_L V2 (Power outputs: Hotend0, Hotend1, Bed, Fan) +#define BOARD_BTT_SKR_E3_TURBO 2510 // BigTreeTech SKR E3 Turbo (Power outputs: Hotend0, Hotend1, Bed, Fan0, Fan1) +#define BOARD_FLY_CDY 2511 // FLY_CDY (Power outputs: Hotend0, Hotend1, Hotend2, Bed, Fan0, Fan1, Fan2) + +// +// SAM3X8E ARM Cortex M3 +// + +#define BOARD_DUE3DOM 3000 // DUE3DOM for Arduino DUE +#define BOARD_DUE3DOM_MINI 3001 // DUE3DOM MINI for Arduino DUE +#define BOARD_RADDS 3002 // RADDS +#define BOARD_RAMPS_FD_V1 3003 // RAMPS-FD v1 +#define BOARD_RAMPS_FD_V2 3004 // RAMPS-FD v2 +#define BOARD_RAMPS_SMART_EFB 3005 // RAMPS-SMART (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_SMART_EEB 3006 // RAMPS-SMART (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_SMART_EFF 3007 // RAMPS-SMART (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_SMART_EEF 3008 // RAMPS-SMART (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_SMART_SF 3009 // RAMPS-SMART (Power outputs: Spindle, Controller Fan) +#define BOARD_RAMPS_DUO_EFB 3010 // RAMPS Duo (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS_DUO_EEB 3011 // RAMPS Duo (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS_DUO_EFF 3012 // RAMPS Duo (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS_DUO_EEF 3013 // RAMPS Duo (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS_DUO_SF 3014 // RAMPS Duo (Power outputs: Spindle, Controller Fan) +#define BOARD_RAMPS4DUE_EFB 3015 // RAMPS4DUE (Power outputs: Hotend, Fan, Bed) +#define BOARD_RAMPS4DUE_EEB 3016 // RAMPS4DUE (Power outputs: Hotend0, Hotend1, Bed) +#define BOARD_RAMPS4DUE_EFF 3017 // RAMPS4DUE (Power outputs: Hotend, Fan0, Fan1) +#define BOARD_RAMPS4DUE_EEF 3018 // RAMPS4DUE (Power outputs: Hotend0, Hotend1, Fan) +#define BOARD_RAMPS4DUE_SF 3019 // RAMPS4DUE (Power outputs: Spindle, Controller Fan) +#define BOARD_RURAMPS4D_11 3020 // RuRAMPS4Duo v1.1 (Power outputs: Hotend0, Hotend1, Hotend2, Fan0, Fan1, Bed) +#define BOARD_RURAMPS4D_13 3021 // RuRAMPS4Duo v1.3 (Power outputs: Hotend0, Hotend1, Hotend2, Fan0, Fan1, Bed) +#define BOARD_ULTRATRONICS_PRO 3022 // ReprapWorld Ultratronics Pro V1.0 +#define BOARD_ARCHIM1 3023 // UltiMachine Archim1 (with DRV8825 drivers) +#define BOARD_ARCHIM2 3024 // UltiMachine Archim2 (with TMC2130 drivers) +#define BOARD_ALLIGATOR 3025 // Alligator Board R2 +#define BOARD_CNCONTROLS_15D 3026 // Cartesio CN Controls V15 on DUE + +// +// SAM3X8C ARM Cortex M3 +// + +#define BOARD_PRINTRBOARD_G2 3100 // PRINTRBOARD G2 +#define BOARD_ADSK 3101 // Arduino DUE Shield Kit (ADSK) + +// +// STM32 ARM Cortex-M3 +// + +#define BOARD_MALYAN_M200_V2 4000 // STM32F070CB controller +#define BOARD_MALYAN_M300 4001 // STM32F070-based delta +#define BOARD_STM32F103RE 4002 // STM32F103RE Libmaple-based STM32F1 controller +#define BOARD_MALYAN_M200 4003 // STM32C8T6 Libmaple-based STM32F1 controller +#define BOARD_STM3R_MINI 4004 // STM32F103RE Libmaple-based STM32F1 controller +#define BOARD_GTM32_PRO_VB 4005 // STM32F103VET6 controller +#define BOARD_GTM32_MINI 4006 // STM32F103VET6 controller +#define BOARD_GTM32_MINI_A30 4007 // STM32F103VET6 controller +#define BOARD_GTM32_REV_B 4008 // STM32F103VET6 controller +#define BOARD_MORPHEUS 4009 // STM32F103C8 / STM32F103CB Libmaple-based STM32F1 controller +#define BOARD_CHITU3D 4010 // Chitu3D (STM32F103RET6) +#define BOARD_MKS_ROBIN 4011 // MKS Robin (STM32F103ZET6) +#define BOARD_MKS_ROBIN_MINI 4012 // MKS Robin Mini (STM32F103VET6) +#define BOARD_MKS_ROBIN_NANO 4013 // MKS Robin Nano (STM32F103VET6) +#define BOARD_MKS_ROBIN_NANO_V2 4014 // MKS Robin Nano V2 (STM32F103VET6) +#define BOARD_MKS_ROBIN_LITE 4015 // MKS Robin Lite/Lite2 (STM32F103RCT6) +#define BOARD_MKS_ROBIN_LITE3 4016 // MKS Robin Lite3 (STM32F103RCT6) +#define BOARD_MKS_ROBIN_PRO 4017 // MKS Robin Pro (STM32F103ZET6) +#define BOARD_MKS_ROBIN_E3 4018 // MKS Robin E3 (STM32F103RCT6) +#define BOARD_MKS_ROBIN_E3_V1_1 4019 // MKS Robin E3 V1.1 (STM32F103RCT6) +#define BOARD_MKS_ROBIN_E3D 4020 // MKS Robin E3D (STM32F103RCT6) +#define BOARD_MKS_ROBIN_E3D_V1_1 4021 // MKS Robin E3D V1.1 (STM32F103RCT6) +#define BOARD_MKS_ROBIN_E3P 4022 // MKS Robin E3p (STM32F103VET6) +#define BOARD_BTT_SKR_MINI_V1_1 4023 // BigTreeTech SKR Mini v1.1 (STM32F103RC) +#define BOARD_BTT_SKR_MINI_E3_V1_0 4024 // BigTreeTech SKR Mini E3 (STM32F103RC) +#define BOARD_BTT_SKR_MINI_E3_V1_2 4025 // BigTreeTech SKR Mini E3 V1.2 (STM32F103RC) +#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC) +#define BOARD_BTT_SKR_MINI_MZ_V1_0 4027 // BigTreeTech SKR Mini MZ V1.0 (STM32F103RC) +#define BOARD_BTT_SKR_E3_DIP 4028 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE) +#define BOARD_BTT_SKR_CR6 4029 // BigTreeTech SKR CR6 v1.0 (STM32F103RE) +#define BOARD_JGAURORA_A5S_A1 4030 // JGAurora A5S A1 (STM32F103ZET6) +#define BOARD_FYSETC_AIO_II 4031 // FYSETC AIO_II +#define BOARD_FYSETC_CHEETAH 4032 // FYSETC Cheetah +#define BOARD_FYSETC_CHEETAH_V12 4033 // FYSETC Cheetah V1.2 +#define BOARD_LONGER3D_LK 4034 // Alfawise U20/U20+/U30 (Longer3D LK1/2) / STM32F103VET6 +#define BOARD_CCROBOT_MEEB_3DP 4035 // ccrobot-online.com MEEB_3DP (STM32F103RC) +#define BOARD_CHITU3D_V5 4036 // Chitu3D TronXY X5SA V5 Board +#define BOARD_CHITU3D_V6 4037 // Chitu3D TronXY X5SA V5 Board +#define BOARD_CREALITY_V4 4038 // Creality v4.x (STM32F103RE) +#define BOARD_CREALITY_V427 4039 // Creality v4.2.7 (STM32F103RE) +#define BOARD_CREALITY_V4210 4040 // Creality v4.2.10 (STM32F103RE) as found in the CR-30 +#define BOARD_CREALITY_V431 4041 // Creality v4.3.1 (STM32F103RE) +#define BOARD_CREALITY_V452 4042 // Creality v4.5.2 (STM32F103RE) +#define BOARD_CREALITY_V453 4043 // Creality v4.5.3 (STM32F103RE) +#define BOARD_TRIGORILLA_PRO 4044 // Trigorilla Pro (STM32F103ZET6) +#define BOARD_FLY_MINI 4045 // FLY MINI (STM32F103RCT6) +#define BOARD_FLSUN_HISPEED 4046 // FLSUN HiSpeedV1 (STM32F103VET6) +#define BOARD_BEAST 4047 // STM32F103RET6 Libmaple-based controller +#define BOARD_MINGDA_MPX_ARM_MINI 4048 // STM32F103ZET6 Mingda MD-16 + +// +// ARM Cortex-M4F +// + +#define BOARD_TEENSY31_32 4100 // Teensy3.1 and Teensy3.2 +#define BOARD_TEENSY35_36 4101 // Teensy3.5 and Teensy3.6 + +// +// STM32 ARM Cortex-M4F +// + +#define BOARD_ARMED 4200 // Arm'ed STM32F4-based controller +#define BOARD_RUMBA32_V1_0 4201 // RUMBA32 STM32F446VET6 based controller from Aus3D +#define BOARD_RUMBA32_V1_1 4202 // RUMBA32 STM32F446VET6 based controller from Aus3D +#define BOARD_RUMBA32_MKS 4203 // RUMBA32 STM32F446VET6 based controller from Makerbase +#define BOARD_BLACK_STM32F407VE 4204 // BLACK_STM32F407VE +#define BOARD_BLACK_STM32F407ZE 4205 // BLACK_STM32F407ZE +#define BOARD_STEVAL_3DP001V1 4206 // STEVAL-3DP001V1 3D PRINTER BOARD +#define BOARD_BTT_SKR_PRO_V1_1 4207 // BigTreeTech SKR Pro v1.1 (STM32F407ZG) +#define BOARD_BTT_SKR_PRO_V1_2 4208 // BigTreeTech SKR Pro v1.2 (STM32F407ZG) +#define BOARD_BTT_BTT002_V1_0 4209 // BigTreeTech BTT002 v1.0 (STM32F407VG) +#define BOARD_BTT_GTR_V1_0 4210 // BigTreeTech GTR v1.0 (STM32F407IGT) +#define BOARD_LERDGE_K 4211 // Lerdge K (STM32F407ZG) +#define BOARD_LERDGE_S 4212 // Lerdge S (STM32F407VE) +#define BOARD_LERDGE_X 4213 // Lerdge X (STM32F407VE) +#define BOARD_VAKE403D 4214 // VAkE 403D (STM32F446VET6) +#define BOARD_FYSETC_S6 4215 // FYSETC S6 board +#define BOARD_FYSETC_S6_V2_0 4216 // FYSETC S6 v2.0 board +#define BOARD_FLYF407ZG 4217 // FLYF407ZG board (STM32F407ZG) +#define BOARD_MKS_ROBIN2 4218 // MKS_ROBIN2 (STM32F407ZE) +#define BOARD_MKS_ROBIN_PRO_V2 4219 // MKS Robin Pro V2 (STM32F407VE) +#define BOARD_MKS_ROBIN_NANO_V3 4220 // MKS Robin Nano V3 (STM32F407VG) +#define BOARD_ANET_ET4 4221 // ANET ET4 V1.x (STM32F407VGT6) +#define BOARD_ANET_ET4P 4222 // ANET ET4P V1.x (STM32F407VGT6) +#define BOARD_FYSETC_CHEETAH_V20 4223 // FYSETC Cheetah V2.0 + +// +// ARM Cortex M7 +// + +#define BOARD_REMRAM_V1 5000 // RemRam v1 +#define BOARD_TEENSY41 5001 // Teensy 4.1 +#define BOARD_T41U5XBB 5002 // T41U5XBB Teensy 4.1 breakout board +#define BOARD_NUCLEO_F767ZI 5003 // ST NUCLEO-F767ZI Dev Board + +// +// Espressif ESP32 WiFi +// + +#define BOARD_ESPRESSIF_ESP32 6000 // Generic ESP32 +#define BOARD_MRR_ESPA 6001 // MRR ESPA board based on ESP32 (native pins only) +#define BOARD_MRR_ESPE 6002 // MRR ESPE board based on ESP32 (with I2S stepper stream) +#define BOARD_E4D_BOX 6003 // E4d@BOX +#define BOARD_FYSETC_E4 6004 // FYSETC E4 + +// +// SAMD51 ARM Cortex M4 +// + +#define BOARD_AGCM4_RAMPS_144 6100 // RAMPS 1.4.4 + +// +// Custom board +// + +#define BOARD_CUSTOM 9998 // Custom pins definition for development and/or rare boards + +// +// Simulations +// + +#define BOARD_LINUX_RAMPS 9999 + +#define _MB_1(B) (defined(BOARD_##B) && MOTHERBOARD==BOARD_##B) +#define MB(V...) DO(MB,||,V) + +#define IS_MELZI MB(MELZI, MELZI_CREALITY, MELZI_MAKR3D, MELZI_MALYAN, MELZI_TRONXY, MELZI_V2) diff --git a/Marlin/src/core/debug_out.h b/Marlin/src/core/debug_out.h new file mode 100644 index 0000000..6ae1b9d --- /dev/null +++ b/Marlin/src/core/debug_out.h @@ -0,0 +1,121 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +// +// Serial aliases for debugging. +// Include this header after defining DEBUG_OUT +// (or not) in a given .cpp file +// + +#undef DEBUG_SECTION +#undef DEBUG_PRINT_P +#undef DEBUG_ECHO_START +#undef DEBUG_ERROR_START +#undef DEBUG_CHAR +#undef DEBUG_ECHO +#undef DEBUG_DECIMAL +#undef DEBUG_ECHO_F +#undef DEBUG_ECHOLN +#undef DEBUG_ECHOPGM +#undef DEBUG_ECHOLNPGM +#undef DEBUG_ECHOPAIR +#undef DEBUG_ECHOPAIR_P +#undef DEBUG_ECHOPAIR_F +#undef DEBUG_ECHOPAIR_F_P +#undef DEBUG_ECHOLNPAIR +#undef DEBUG_ECHOLNPAIR_P +#undef DEBUG_ECHOLNPAIR_F +#undef DEBUG_ECHOLNPAIR_F_P +#undef DEBUG_ECHO_MSG +#undef DEBUG_ERROR_MSG +#undef DEBUG_EOL +#undef DEBUG_FLUSH +#undef DEBUG_POS +#undef DEBUG_XYZ +#undef DEBUG_DELAY +#undef DEBUG_SYNCHRONIZE + +#if DEBUG_OUT + + #include "debug_section.h" + #define DEBUG_SECTION(N,S,D) SectionLog N(PSTR(S),D) + + #define DEBUG_PRINT_P(P) serialprintPGM(P) + #define DEBUG_ECHO_START SERIAL_ECHO_START + #define DEBUG_ERROR_START SERIAL_ERROR_START + #define DEBUG_CHAR SERIAL_CHAR + #define DEBUG_ECHO SERIAL_ECHO + #define DEBUG_DECIMAL SERIAL_DECIMAL + #define DEBUG_ECHO_F SERIAL_ECHO_F + #define DEBUG_ECHOLN SERIAL_ECHOLN + #define DEBUG_ECHOPGM SERIAL_ECHOPGM + #define DEBUG_ECHOLNPGM SERIAL_ECHOLNPGM + #define DEBUG_ECHOPAIR SERIAL_ECHOPAIR + #define DEBUG_ECHOPAIR_P SERIAL_ECHOPAIR_P + #define DEBUG_ECHOPAIR_F SERIAL_ECHOPAIR_F + #define DEBUG_ECHOPAIR_F_P SERIAL_ECHOPAIR_F_P + #define DEBUG_ECHOLNPAIR SERIAL_ECHOLNPAIR + #define DEBUG_ECHOLNPAIR_P SERIAL_ECHOLNPAIR_P + #define DEBUG_ECHOLNPAIR_F SERIAL_ECHOLNPAIR_F + #define DEBUG_ECHOLNPAIR_F_P SERIAL_ECHOLNPAIR_F_P + #define DEBUG_ECHO_MSG SERIAL_ECHO_MSG + #define DEBUG_ERROR_MSG SERIAL_ERROR_MSG + #define DEBUG_EOL SERIAL_EOL + #define DEBUG_FLUSH SERIAL_FLUSH + #define DEBUG_POS SERIAL_POS + #define DEBUG_XYZ SERIAL_XYZ + #define DEBUG_DELAY(ms) serial_delay(ms) + #define DEBUG_SYNCHRONIZE() planner.synchronize() + +#else + + #define DEBUG_SECTION(...) NOOP + #define DEBUG_PRINT_P(P) NOOP + #define DEBUG_ECHO_START() NOOP + #define DEBUG_ERROR_START() NOOP + #define DEBUG_CHAR(...) NOOP + #define DEBUG_ECHO(...) NOOP + #define DEBUG_DECIMAL(...) NOOP + #define DEBUG_ECHO_F(...) NOOP + #define DEBUG_ECHOLN(...) NOOP + #define DEBUG_ECHOPGM(...) NOOP + #define DEBUG_ECHOLNPGM(...) NOOP + #define DEBUG_ECHOPAIR(...) NOOP + #define DEBUG_ECHOPAIR_P(...) NOOP + #define DEBUG_ECHOPAIR_F(...) NOOP + #define DEBUG_ECHOPAIR_F_P(...) NOOP + #define DEBUG_ECHOLNPAIR(...) NOOP + #define DEBUG_ECHOLNPAIR_P(...) NOOP + #define DEBUG_ECHOLNPAIR_F(...) NOOP + #define DEBUG_ECHOLNPAIR_F_P(...) NOOP + #define DEBUG_ECHO_MSG(...) NOOP + #define DEBUG_ERROR_MSG(...) NOOP + #define DEBUG_EOL() NOOP + #define DEBUG_FLUSH() NOOP + #define DEBUG_POS(...) NOOP + #define DEBUG_XYZ(...) NOOP + #define DEBUG_DELAY(...) NOOP + #define DEBUG_SYNCHRONIZE() NOOP + +#endif + +#undef DEBUG_OUT diff --git a/Marlin/src/core/debug_section.h b/Marlin/src/core/debug_section.h new file mode 100644 index 0000000..7f39bc7 --- /dev/null +++ b/Marlin/src/core/debug_section.h @@ -0,0 +1,49 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "serial.h" +#include "../module/motion.h" + +class SectionLog { +public: + SectionLog(PGM_P const msg=nullptr, bool inbug=true) { + the_msg = msg; + if ((debug = inbug)) echo_msg(PSTR(">>>")); + } + + ~SectionLog() { if (debug) echo_msg(PSTR("<<<")); } + +private: + PGM_P the_msg; + bool debug; + + void echo_msg(PGM_P const pre) { + serialprintPGM(pre); + if (the_msg) { + SERIAL_CHAR(' '); + serialprintPGM(the_msg); + } + SERIAL_CHAR(' '); + print_xyz(current_position); + } +}; diff --git a/Marlin/src/core/drivers.h b/Marlin/src/core/drivers.h new file mode 100644 index 0000000..3a0e620 --- /dev/null +++ b/Marlin/src/core/drivers.h @@ -0,0 +1,197 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +// +// Included by MarlinConfigPre.h ahead of Configuration_adv.h. +// Don't use #if in this file for anything not defined early! +// + +#define _A4988 0x4988 +#define _A5984 0x5984 +#define _DRV8825 0x8825 +#define _LV8729 0x8729 +#define _L6470 0x6470 +#define _L6474 0x6474 +#define _L6480 0x6480 +#define _POWERSTEP01 0xF00D +#define _TB6560 0x6560 +#define _TB6600 0x6600 +#define _TMC2100 0x2100 +#define _TMC2130 0x2130A +#define _TMC2130_STANDALONE 0x2130B +#define _TMC2160 0x2160A +#define _TMC2160_STANDALONE 0x2160B +#define _TMC2208 0x2208A +#define _TMC2208_STANDALONE 0x2208B +#define _TMC2209 0x2209A +#define _TMC2209_STANDALONE 0x2209B +#define _TMC26X 0x2600A +#define _TMC26X_STANDALONE 0x2600B +#define _TMC2660 0x2660A +#define _TMC2660_STANDALONE 0x2660B +#define _TMC5130 0x5130A +#define _TMC5130_STANDALONE 0x5130B +#define _TMC5160 0x5160A +#define _TMC5160_STANDALONE 0x5160B + +#define _DRIVER_ID(V) _CAT(_, V) +#define _AXIS_DRIVER_TYPE(A,T) (_DRIVER_ID(A##_DRIVER_TYPE) == _DRIVER_ID(T)) + +#define AXIS_DRIVER_TYPE_X(T) _AXIS_DRIVER_TYPE(X,T) +#define AXIS_DRIVER_TYPE_Y(T) _AXIS_DRIVER_TYPE(Y,T) +#define AXIS_DRIVER_TYPE_Z(T) _AXIS_DRIVER_TYPE(Z,T) + +#define AXIS_DRIVER_TYPE_X2(T) (EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) && _AXIS_DRIVER_TYPE(X2,T)) +#define AXIS_DRIVER_TYPE_Y2(T) (ENABLED(Y_DUAL_STEPPER_DRIVERS) && _AXIS_DRIVER_TYPE(Y2,T)) +#define AXIS_DRIVER_TYPE_Z2(T) (NUM_Z_STEPPER_DRIVERS >= 2 && _AXIS_DRIVER_TYPE(Z2,T)) +#define AXIS_DRIVER_TYPE_Z3(T) (NUM_Z_STEPPER_DRIVERS >= 3 && _AXIS_DRIVER_TYPE(Z3,T)) +#define AXIS_DRIVER_TYPE_Z4(T) (NUM_Z_STEPPER_DRIVERS >= 4 && _AXIS_DRIVER_TYPE(Z4,T)) + +#define AXIS_DRIVER_TYPE_E(N,T) (E_STEPPERS > N && _AXIS_DRIVER_TYPE(E##N,T)) +#define AXIS_DRIVER_TYPE_E0(T) AXIS_DRIVER_TYPE_E(0,T) +#define AXIS_DRIVER_TYPE_E1(T) AXIS_DRIVER_TYPE_E(1,T) +#define AXIS_DRIVER_TYPE_E2(T) AXIS_DRIVER_TYPE_E(2,T) +#define AXIS_DRIVER_TYPE_E3(T) AXIS_DRIVER_TYPE_E(3,T) +#define AXIS_DRIVER_TYPE_E4(T) AXIS_DRIVER_TYPE_E(4,T) +#define AXIS_DRIVER_TYPE_E5(T) AXIS_DRIVER_TYPE_E(5,T) +#define AXIS_DRIVER_TYPE_E6(T) AXIS_DRIVER_TYPE_E(6,T) +#define AXIS_DRIVER_TYPE_E7(T) AXIS_DRIVER_TYPE_E(7,T) + +#define AXIS_DRIVER_TYPE(A,T) AXIS_DRIVER_TYPE_##A(T) + +#define _OR_ADTE(N,T) || AXIS_DRIVER_TYPE_E(N,T) +#define HAS_E_DRIVER(T) (0 RREPEAT2(E_STEPPERS, _OR_ADTE, T)) + +#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \ + || AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \ + || AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) ) + +// +// Trinamic Stepper Drivers +// + +// Test for supported TMC drivers that require advanced configuration +// Does not match standalone configurations +#if ( HAS_DRIVER(TMC2130) || HAS_DRIVER(TMC2160) \ + || HAS_DRIVER(TMC2208) || HAS_DRIVER(TMC2209) \ + || HAS_DRIVER(TMC2660) \ + || HAS_DRIVER(TMC5130) || HAS_DRIVER(TMC5160) ) + #define HAS_TRINAMIC_CONFIG 1 +#endif + +#define HAS_TRINAMIC HAS_TRINAMIC_CONFIG + +#if ( HAS_DRIVER(TMC2130_STANDALONE) || HAS_DRIVER(TMC2160_STANDALONE) \ + || HAS_DRIVER(TMC2208_STANDALONE) || HAS_DRIVER(TMC2209_STANDALONE) \ + || HAS_DRIVER(TMC26X_STANDALONE) || HAS_DRIVER(TMC2660_STANDALONE) \ + || HAS_DRIVER(TMC5130_STANDALONE) || HAS_DRIVER(TMC5160_STANDALONE) ) + #define HAS_TRINAMIC_STANDALONE 1 +#endif + +#if HAS_DRIVER(TMC2130) || HAS_DRIVER(TMC2160) || HAS_DRIVER(TMC5130) || HAS_DRIVER(TMC5160) + #define HAS_TMCX1X0 1 +#endif + +#if HAS_DRIVER(TMC2208) || HAS_DRIVER(TMC2209) + #define HAS_TMC220x 1 +#endif + +#define AXIS_IS_TMC(A) ( AXIS_DRIVER_TYPE(A,TMC2130) || AXIS_DRIVER_TYPE(A,TMC2160) \ + || AXIS_DRIVER_TYPE(A,TMC2208) || AXIS_DRIVER_TYPE(A,TMC2209) \ + || AXIS_DRIVER_TYPE(A,TMC2660) \ + || AXIS_DRIVER_TYPE(A,TMC5130) || AXIS_DRIVER_TYPE(A,TMC5160) ) + +// Test for a driver that uses SPI - this allows checking whether a _CS_ pin +// is considered sensitive +#define AXIS_HAS_SPI(A) ( AXIS_DRIVER_TYPE(A,TMC2130) || AXIS_DRIVER_TYPE(A,TMC2160) \ + || AXIS_DRIVER_TYPE(A,TMC2660) \ + || AXIS_DRIVER_TYPE(A,TMC5130) || AXIS_DRIVER_TYPE(A,TMC5160) ) + +#define AXIS_HAS_UART(A) ( AXIS_DRIVER_TYPE(A,TMC2208) || AXIS_DRIVER_TYPE(A,TMC2209) ) + +#define AXIS_HAS_RXTX AXIS_HAS_UART + +#define AXIS_HAS_HW_SERIAL(A) ( AXIS_HAS_UART(A) && defined(A##_HARDWARE_SERIAL) ) +#define AXIS_HAS_SW_SERIAL(A) ( AXIS_HAS_UART(A) && !defined(A##_HARDWARE_SERIAL) ) + +#define AXIS_HAS_STALLGUARD(A) ( AXIS_DRIVER_TYPE(A,TMC2130) || AXIS_DRIVER_TYPE(A,TMC2160) \ + || AXIS_DRIVER_TYPE(A,TMC2209) \ + || AXIS_DRIVER_TYPE(A,TMC2660) \ + || AXIS_DRIVER_TYPE(A,TMC5130) || AXIS_DRIVER_TYPE(A,TMC5160) ) + +#define AXIS_HAS_STEALTHCHOP(A) ( AXIS_DRIVER_TYPE(A,TMC2130) || AXIS_DRIVER_TYPE(A,TMC2160) \ + || AXIS_DRIVER_TYPE(A,TMC2208) || AXIS_DRIVER_TYPE(A,TMC2209) \ + || AXIS_DRIVER_TYPE(A,TMC5130) || AXIS_DRIVER_TYPE(A,TMC5160) ) + +#define AXIS_HAS_SG_RESULT(A) ( AXIS_DRIVER_TYPE(A,TMC2130) || AXIS_DRIVER_TYPE(A,TMC2160) \ + || AXIS_DRIVER_TYPE(A,TMC2208) || AXIS_DRIVER_TYPE(A,TMC2209) ) + +#define AXIS_HAS_COOLSTEP(A) ( AXIS_DRIVER_TYPE(A,TMC2130) \ + || AXIS_DRIVER_TYPE(A,TMC2209) \ + || AXIS_DRIVER_TYPE(A,TMC5130) || AXIS_DRIVER_TYPE(A,TMC5160) ) + +#define _OR_EAH(N,T) || AXIS_HAS_##T(E##N) +#define E_AXIS_HAS(T) (0 _OR_EAH(0,T) _OR_EAH(1,T) _OR_EAH(2,T) _OR_EAH(3,T) _OR_EAH(4,T) _OR_EAH(5,T) _OR_EAH(6,T) _OR_EAH(7,T)) + +#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(Y) || AXIS_HAS_##T(Z) \ + || AXIS_HAS_##T(X2) || AXIS_HAS_##T(Y2) || AXIS_HAS_##T(Z2) \ + || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) || E_AXIS_HAS(T) ) + +#if ANY_AXIS_HAS(STEALTHCHOP) + #define HAS_STEALTHCHOP 1 +#endif +#if ANY_AXIS_HAS(STALLGUARD) + #define HAS_STALLGUARD 1 +#endif +#if ANY_AXIS_HAS(SG_RESULT) + #define HAS_SG_RESULT 1 +#endif +#if ANY_AXIS_HAS(COOLSTEP) + #define HAS_COOLSTEP 1 +#endif +#if ANY_AXIS_HAS(RXTX) + #define HAS_TMC_UART 1 +#endif +#if ANY_AXIS_HAS(SPI) + #define HAS_TMC_SPI 1 +#endif + +// +// TMC26XX Stepper Drivers +// +#if HAS_DRIVER(TMC26X) + #define HAS_TMC26X 1 +#endif + +// +// L64XX Stepper Drivers +// + +#if HAS_DRIVER(L6470) || HAS_DRIVER(L6474) || HAS_DRIVER(L6480) || HAS_DRIVER(POWERSTEP01) + #define HAS_L64XX 1 +#endif +#if HAS_L64XX && !HAS_DRIVER(L6474) + #define HAS_L64XX_NOT_L6474 1 +#endif + +#define AXIS_IS_L64XX(A) (AXIS_DRIVER_TYPE_##A(L6470) || AXIS_DRIVER_TYPE_##A(L6474) || AXIS_DRIVER_TYPE_##A(L6480) || AXIS_DRIVER_TYPE_##A(POWERSTEP01)) diff --git a/Marlin/src/core/language.h b/Marlin/src/core/language.h new file mode 100644 index 0000000..923ad90 --- /dev/null +++ b/Marlin/src/core/language.h @@ -0,0 +1,408 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "../inc/MarlinConfig.h" + +#define _UxGT(a) a + +// Fallback if no language is set. DON'T CHANGE +#ifndef LCD_LANGUAGE + #define LCD_LANGUAGE en +#endif + +// For character-based LCD controllers (DISPLAY_CHARSET_HD44780) +#define JAPANESE 1 +#define WESTERN 2 +#define CYRILLIC 3 + +// NOTE: IF YOU CHANGE LANGUAGE FILES OR MERGE A FILE WITH CHANGES +// +// ==> ALWAYS TRY TO COMPILE MARLIN WITH/WITHOUT "ULTIPANEL" / "ULTRA_LCD" / "SDSUPPORT" #define IN "Configuration.h" +// ==> ALSO TRY ALL AVAILABLE LANGUAGE OPTIONS +// See also https://marlinfw.org/docs/development/lcd_language.html + +// Languages +// an Aragonese +// bg Bulgarian +// ca Catalan +// cz Czech +// da Danish +// de German +// el Greek +// el_gr Greek (Greece) +// en English +// es Spanish +// eu Basque-Euskera +// fi Finnish +// fr French +// gl Galician +// hr Croatian +// hu Hungarian +// it Italian +// jp_kana Japanese +// ko_KR Korean (South Korea) +// nl Dutch +// pl Polish +// pt Portuguese +// pt_br Portuguese (Brazilian) +// ro Romanian +// ru Russian +// sk Slovak +// sv Swedish +// tr Turkish +// uk Ukrainian +// vi Vietnamese +// zh_CN Chinese (Simplified) +// zh_TW Chinese (Traditional) + +#ifdef DEFAULT_SOURCE_CODE_URL + #undef SOURCE_CODE_URL + #define SOURCE_CODE_URL DEFAULT_SOURCE_CODE_URL +#endif + +#ifdef CUSTOM_MACHINE_NAME + #undef MACHINE_NAME + #define MACHINE_NAME CUSTOM_MACHINE_NAME +#elif defined(DEFAULT_MACHINE_NAME) + #undef MACHINE_NAME + #define MACHINE_NAME DEFAULT_MACHINE_NAME +#endif + +#ifndef MACHINE_UUID + #define MACHINE_UUID DEFAULT_MACHINE_UUID +#endif + +#define MARLIN_WEBSITE_URL "marlinfw.org" + +//#if !defined(STRING_SPLASH_LINE3) && defined(WEBSITE_URL) +// #define STRING_SPLASH_LINE3 WEBSITE_URL +//#endif + +// +// Common Serial Console Messages +// Don't change these strings because serial hosts look for them. +// + +#define STR_ENQUEUEING "enqueueing \"" +#define STR_POWERUP "PowerUp" +#define STR_EXTERNAL_RESET " External Reset" +#define STR_BROWNOUT_RESET " Brown out Reset" +#define STR_WATCHDOG_RESET " Watchdog Reset" +#define STR_SOFTWARE_RESET " Software Reset" +#define STR_FREE_MEMORY " Free Memory: " +#define STR_PLANNER_BUFFER_BYTES " PlannerBufferBytes: " +#define STR_OK "ok" +#define STR_WAIT "wait" +#define STR_STATS "Stats: " +#define STR_FILE_SAVED "Done saving file." +#define STR_ERR_LINE_NO "Line Number is not Last Line Number+1, Last Line: " +#define STR_ERR_CHECKSUM_MISMATCH "checksum mismatch, Last Line: " +#define STR_ERR_NO_CHECKSUM "No Checksum with line number, Last Line: " +#define STR_FILE_PRINTED "Done printing file" +#define STR_NO_MEDIA "No media" +#define STR_BEGIN_FILE_LIST "Begin file list" +#define STR_END_FILE_LIST "End file list" +#define STR_INVALID_EXTRUDER "Invalid extruder" +#define STR_INVALID_E_STEPPER "Invalid E stepper" +#define STR_E_STEPPER_NOT_SPECIFIED "E stepper not specified" +#define STR_INVALID_SOLENOID "Invalid solenoid" +#define STR_COUNT_X " Count X:" +#define STR_COUNT_A " Count A:" +#define STR_WATCHDOG_FIRED "Watchdog timeout. Reset required." +#define STR_ERR_KILLED "Printer halted. kill() called!" +#define STR_ERR_STOPPED "Printer stopped due to errors. Fix the error and use M999 to restart. (Temperature is reset. Set it after restarting)" +#define STR_BUSY_PROCESSING "busy: processing" +#define STR_BUSY_PAUSED_FOR_USER "busy: paused for user" +#define STR_BUSY_PAUSED_FOR_INPUT "busy: paused for input" +#define STR_Z_MOVE_COMP "Z_move_comp" +#define STR_RESEND "Resend: " +#define STR_UNKNOWN_COMMAND "Unknown command: \"" +#define STR_ACTIVE_EXTRUDER "Active Extruder: " +#define STR_X_MIN "x_min" +#define STR_X_MAX "x_max" +#define STR_X2_MIN "x2_min" +#define STR_X2_MAX "x2_max" +#define STR_Y_MIN "y_min" +#define STR_Y_MAX "y_max" +#define STR_Y2_MIN "y2_min" +#define STR_Y2_MAX "y2_max" +#define STR_Z_MIN "z_min" +#define STR_Z_MAX "z_max" +#define STR_Z2_MIN "z2_min" +#define STR_Z2_MAX "z2_max" +#define STR_Z3_MIN "z3_min" +#define STR_Z3_MAX "z3_max" +#define STR_Z4_MIN "z4_min" +#define STR_Z4_MAX "z4_max" +#define STR_Z_PROBE "z_probe" +#define STR_PROBE_EN "probe_en" +#define STR_FILAMENT_RUNOUT_SENSOR "filament" +#define STR_PROBE_OFFSET "Probe Offset" +#define STR_SKEW_MIN "min_skew_factor: " +#define STR_SKEW_MAX "max_skew_factor: " +#define STR_ERR_MATERIAL_INDEX "M145 S<index> out of range (0-1)" +#define STR_ERR_M421_PARAMETERS "M421 incorrect parameter usage" +#define STR_ERR_BAD_PLANE_MODE "G5 requires XY plane mode" +#define STR_ERR_MESH_XY "Mesh point out of range" +#define STR_ERR_ARC_ARGS "G2/G3 bad parameters" +#define STR_ERR_PROTECTED_PIN "Protected Pin" +#define STR_ERR_M420_FAILED "Failed to enable Bed Leveling" +#define STR_ERR_M428_TOO_FAR "Too far from reference point" +#define STR_ERR_M303_DISABLED "PIDTEMP disabled" +#define STR_M119_REPORT "Reporting endstop status" +#define STR_ON "ON" +#define STR_OFF "OFF" +#define STR_ENDSTOP_HIT "TRIGGERED" +#define STR_ENDSTOP_OPEN "open" +#define STR_HOTEND_OFFSET "Hotend offsets:" +#define STR_DUPLICATION_MODE "Duplication mode: " +#define STR_SOFT_ENDSTOPS "Soft endstops: " +#define STR_SOFT_MIN " Min: " +#define STR_SOFT_MAX " Max: " + +#define STR_SAVED_POS "Position saved" +#define STR_RESTORING_POS "Restoring position" +#define STR_INVALID_POS_SLOT "Invalid slot. Total: " + +#define STR_SD_CANT_OPEN_SUBDIR "Cannot open subdir " +#define STR_SD_INIT_FAIL "No SD card" +#define STR_SD_VOL_INIT_FAIL "volume.init failed" +#define STR_SD_OPENROOT_FAIL "openRoot failed" +#define STR_SD_CARD_OK "SD card ok" +#define STR_SD_WORKDIR_FAIL "workDir open failed" +#define STR_SD_OPEN_FILE_FAIL "open failed, File: " +#define STR_SD_FILE_OPENED "File opened: " +#define STR_SD_SIZE " Size: " +#define STR_SD_FILE_SELECTED "File selected" +#define STR_SD_WRITE_TO_FILE "Writing to file: " +#define STR_SD_PRINTING_BYTE "SD printing byte " +#define STR_SD_NOT_PRINTING "Not SD printing" +#define STR_SD_ERR_WRITE_TO_FILE "error writing to file" +#define STR_SD_ERR_READ "SD read error" +#define STR_SD_CANT_ENTER_SUBDIR "Cannot enter subdir: " + +#define STR_ENDSTOPS_HIT "endstops hit: " +#define STR_ERR_COLD_EXTRUDE_STOP " cold extrusion prevented" +#define STR_ERR_LONG_EXTRUDE_STOP " too long extrusion prevented" +#define STR_ERR_HOTEND_TOO_COLD "Hotend too cold" +#define STR_ERR_EEPROM_WRITE "Error writing to EEPROM!" + +#define STR_FILAMENT_CHANGE_HEAT_LCD "Press button to heat nozzle" +#define STR_FILAMENT_CHANGE_INSERT_LCD "Insert filament and press button" +#define STR_FILAMENT_CHANGE_WAIT_LCD "Press button to resume" +#define STR_FILAMENT_CHANGE_HEAT_M108 "Send M108 to heat nozzle" +#define STR_FILAMENT_CHANGE_INSERT_M108 "Insert filament and send M108" +#define STR_FILAMENT_CHANGE_WAIT_M108 "Send M108 to resume" + +#define STR_STOP_BLTOUCH "!! STOP called because of BLTouch error - restart with M999" +#define STR_STOP_UNHOMED "!! STOP called because of unhomed error - restart with M999" +#define STR_KILL_INACTIVE_TIME "!! KILL caused by too much inactive time - current command: " +#define STR_KILL_BUTTON "!! KILL caused by KILL button/pin" + +// temperature.cpp strings +#define STR_PID_AUTOTUNE_START "PID Autotune start" +#define STR_PID_BAD_EXTRUDER_NUM "PID Autotune failed! Bad extruder number" +#define STR_PID_TEMP_TOO_HIGH "PID Autotune failed! Temperature too high" +#define STR_PID_TIMEOUT "PID Autotune failed! timeout" +#define STR_BIAS " bias: " +#define STR_D_COLON " d: " +#define STR_T_MIN " min: " +#define STR_T_MAX " max: " +#define STR_KU " Ku: " +#define STR_TU " Tu: " +#define STR_CLASSIC_PID " Classic PID " +#define STR_KP " Kp: " +#define STR_KI " Ki: " +#define STR_KD " Kd: " +#define STR_PID_AUTOTUNE_FINISHED "PID Autotune finished! Put the last Kp, Ki and Kd constants from below into Configuration.h" +#define STR_PID_DEBUG " PID_DEBUG " +#define STR_PID_DEBUG_INPUT ": Input " +#define STR_PID_DEBUG_OUTPUT " Output " +#define STR_PID_DEBUG_PTERM " pTerm " +#define STR_PID_DEBUG_ITERM " iTerm " +#define STR_PID_DEBUG_DTERM " dTerm " +#define STR_PID_DEBUG_CTERM " cTerm " +#define STR_INVALID_EXTRUDER_NUM " - Invalid extruder number !" + +#define STR_HEATER_BED "bed" +#define STR_HEATER_CHAMBER "chamber" + +#define STR_STOPPED_HEATER ", system stopped! Heater_ID: " +#define STR_REDUNDANCY "Heater switched off. Temperature difference between temp sensors is too high !" +#define STR_T_HEATING_FAILED "Heating failed" +#define STR_T_THERMAL_RUNAWAY "Thermal Runaway" +#define STR_T_MAXTEMP "MAXTEMP triggered" +#define STR_T_MINTEMP "MINTEMP triggered" +#define STR_ERR_PROBING_FAILED "Probing Failed" +#define STR_ZPROBE_OUT_SER "Z Probe Past Bed" + +// Debug +#define STR_DEBUG_PREFIX "DEBUG:" +#define STR_DEBUG_OFF "off" +#define STR_DEBUG_ECHO "ECHO" +#define STR_DEBUG_INFO "INFO" +#define STR_DEBUG_ERRORS "ERRORS" +#define STR_DEBUG_DRYRUN "DRYRUN" +#define STR_DEBUG_COMMUNICATION "COMMUNICATION" +#define STR_DEBUG_LEVELING "LEVELING" + +#define STR_PRINTER_LOCKED "Printer locked! (Unlock with M511 or LCD)" +#define STR_WRONG_PASSWORD "Incorrect Password" +#define STR_PASSWORD_TOO_LONG "Password too long" +#define STR_PASSWORD_REMOVED "Password removed" +#define STR_REMINDER_SAVE_SETTINGS "Remember to save!" +#define STR_PASSWORD_SET "Password is " + +// LCD Menu Messages + +#define LANGUAGE_DATA_INCL_(M) STRINGIFY_(fontdata/langdata_##M.h) +#define LANGUAGE_DATA_INCL(M) LANGUAGE_DATA_INCL_(M) + +#define LANGUAGE_INCL_(M) STRINGIFY_(../lcd/language/language_##M.h) +#define LANGUAGE_INCL(M) LANGUAGE_INCL_(M) + +#define STR_X "X" +#define STR_Y "Y" +#define STR_Z "Z" +#define STR_E "E" +#if IS_KINEMATIC + #define STR_A "A" + #define STR_B "B" + #define STR_C "C" +#else + #define STR_A "X" + #define STR_B "Y" + #define STR_C "Z" +#endif +#define STR_X2 "X2" +#define STR_Y2 "Y2" +#define STR_Z2 "Z2" +#define STR_Z3 "Z3" +#define STR_Z4 "Z4" + +#define LCD_STR_A STR_A +#define LCD_STR_B STR_B +#define LCD_STR_C STR_C +#define LCD_STR_E STR_E + +#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL) + + // Custom characters defined in the first 8 characters of the LCD + #define LCD_STR_BEDTEMP "\x00" // Print only as a char. This will have 'unexpected' results when used in a string! + #define LCD_STR_DEGREE "\x01" + #define LCD_STR_THERMOMETER "\x02" // Still used with string concatenation + #define LCD_STR_UPLEVEL "\x03" + #define LCD_STR_REFRESH "\x04" + #define LCD_STR_FOLDER "\x05" + #define LCD_STR_FEEDRATE "\x06" + #define LCD_STR_CLOCK "\x07" + #define LCD_STR_ARROW_RIGHT ">" /* from the default character set */ + +#else + // + // Custom characters from Marlin_symbols.fon which was merged into ISO10646-0-3.bdf + // \x00 intentionally skipped to avoid problems in strings + // + #define LCD_STR_REFRESH "\x01" + #define LCD_STR_FOLDER "\x02" + #define LCD_STR_ARROW_RIGHT "\x03" + #define LCD_STR_UPLEVEL "\x04" + #define LCD_STR_CLOCK "\x05" + #define LCD_STR_FEEDRATE "\x06" + #define LCD_STR_BEDTEMP "\x07" + #define LCD_STR_THERMOMETER "\x08" + #define LCD_STR_DEGREE "\x09" + + #define LCD_STR_SPECIAL_MAX '\x09' + // Maximum here is 0x1F because 0x20 is ' ' (space) and the normal charsets begin. + // Better stay below 0x10 because DISPLAY_CHARSET_HD44780_WESTERN begins here. + + // Symbol characters + #define LCD_STR_FILAM_DIA "\xF8" + #define LCD_STR_FILAM_MUL "\xA4" + +#endif + +/** + * Tool indexes for LCD display only + * + * By convention the LCD shows "E1" for the first extruder. + * However, internal to Marlin E0/T0 is the first tool, and + * most board silkscreens say "E0." Zero-based labels will + * make these indexes consistent but this defies expectation. + */ +#if ENABLED(NUMBER_TOOLS_FROM_0) + #define LCD_FIRST_TOOL 0 + #define LCD_STR_N0 "0" + #define LCD_STR_N1 "1" + #define LCD_STR_N2 "2" + #define LCD_STR_N3 "3" + #define LCD_STR_N4 "4" + #define LCD_STR_N5 "5" + #define LCD_STR_N6 "6" + #define LCD_STR_N7 "7" +#else + #define LCD_FIRST_TOOL 1 + #define LCD_STR_N0 "1" + #define LCD_STR_N1 "2" + #define LCD_STR_N2 "3" + #define LCD_STR_N3 "4" + #define LCD_STR_N4 "5" + #define LCD_STR_N5 "6" + #define LCD_STR_N6 "7" + #define LCD_STR_N7 "8" +#endif + +#define LCD_STR_E0 "E" LCD_STR_N0 +#define LCD_STR_E1 "E" LCD_STR_N1 +#define LCD_STR_E2 "E" LCD_STR_N2 +#define LCD_STR_E3 "E" LCD_STR_N3 +#define LCD_STR_E4 "E" LCD_STR_N4 +#define LCD_STR_E5 "E" LCD_STR_N5 +#define LCD_STR_E6 "E" LCD_STR_N6 +#define LCD_STR_E7 "E" LCD_STR_N7 + +// Use superscripts, if possible. Evaluated at point of use. +#define SUPERSCRIPT_TWO TERN(NOT_EXTENDED_ISO10646_1_5X7, "^2", "²") +#define SUPERSCRIPT_THREE TERN(NOT_EXTENDED_ISO10646_1_5X7, "^3", "³") + +#include "multi_language.h" // Allow multiple languages + +#include "../lcd/language/language_en.h" +#include LANGUAGE_INCL(LCD_LANGUAGE) +#include LANGUAGE_INCL(LCD_LANGUAGE_2) +#include LANGUAGE_INCL(LCD_LANGUAGE_3) +#include LANGUAGE_INCL(LCD_LANGUAGE_4) +#include LANGUAGE_INCL(LCD_LANGUAGE_5) + +#if NONE(DISPLAY_CHARSET_ISO10646_1, \ + DISPLAY_CHARSET_ISO10646_5, \ + DISPLAY_CHARSET_ISO10646_KANA, \ + DISPLAY_CHARSET_ISO10646_GREEK, \ + DISPLAY_CHARSET_ISO10646_CN, \ + DISPLAY_CHARSET_ISO10646_TR, \ + DISPLAY_CHARSET_ISO10646_PL, \ + DISPLAY_CHARSET_ISO10646_CZ, \ + DISPLAY_CHARSET_ISO10646_SK) + #define DISPLAY_CHARSET_ISO10646_1 // use the better font on full graphic displays. +#endif diff --git a/Marlin/src/core/macros.h b/Marlin/src/core/macros.h new file mode 100644 index 0000000..905b85d --- /dev/null +++ b/Marlin/src/core/macros.h @@ -0,0 +1,545 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#if !defined(__has_include) + #define __has_include(...) 1 +#endif + +#define ABCE 4 +#define XYZE 4 +#define ABC 3 +#define XYZ 3 +#define XY 2 + +#define _AXIS(A) (A##_AXIS) + +#define _XMIN_ 100 +#define _YMIN_ 200 +#define _ZMIN_ 300 +#define _XMAX_ 101 +#define _YMAX_ 201 +#define _ZMAX_ 301 +#define _XDIAG_ 102 +#define _YDIAG_ 202 +#define _ZDIAG_ 302 +#define _E0DIAG_ 400 +#define _E1DIAG_ 401 +#define _E2DIAG_ 402 +#define _E3DIAG_ 403 +#define _E4DIAG_ 404 +#define _E5DIAG_ 405 +#define _E6DIAG_ 406 +#define _E7DIAG_ 407 + +#define _FORCE_INLINE_ __attribute__((__always_inline__)) __inline__ +#define FORCE_INLINE __attribute__((always_inline)) inline +#define NO_INLINE __attribute__((noinline)) +#define _UNUSED __attribute__((unused)) +#define _O0 __attribute__((optimize("O0"))) +#define _Os __attribute__((optimize("Os"))) +#define _O1 __attribute__((optimize("O1"))) +#define _O2 __attribute__((optimize("O2"))) +#define _O3 __attribute__((optimize("O3"))) + +#ifndef UNUSED + #define UNUSED(x) ((void)(x)) +#endif + +// Clock speed factors +#if !defined(CYCLES_PER_MICROSECOND) && !defined(__STM32F1__) + #define CYCLES_PER_MICROSECOND (F_CPU / 1000000UL) // 16 or 20 on AVR +#endif + +// Nanoseconds per cycle +#define NANOSECONDS_PER_CYCLE (1000000000.0 / F_CPU) + +// Macros to make a string from a macro +#define STRINGIFY_(M) #M +#define STRINGIFY(M) STRINGIFY_(M) + +#define A(CODE) " " CODE "\n\t" +#define L(CODE) CODE ":\n\t" + +// Macros for bit masks +#undef _BV +#define _BV(n) (1<<(n)) +#define TEST(n,b) (!!((n)&_BV(b))) +#define SET_BIT_TO(N,B,TF) do{ if (TF) SBI(N,B); else CBI(N,B); }while(0) +#ifndef SBI + #define SBI(A,B) (A |= _BV(B)) +#endif +#ifndef CBI + #define CBI(A,B) (A &= ~_BV(B)) +#endif +#define TBI(N,B) (N ^= _BV(B)) +#define _BV32(b) (1UL << (b)) +#define TEST32(n,b) !!((n)&_BV32(b)) +#define SBI32(n,b) (n |= _BV32(b)) +#define CBI32(n,b) (n &= ~_BV32(b)) +#define TBI32(N,B) (N ^= _BV32(B)) + +#define cu(x) ({__typeof__(x) _x = (x); (_x)*(_x)*(_x);}) +#define RADIANS(d) ((d)*float(M_PI)/180.0f) +#define DEGREES(r) ((r)*180.0f/float(M_PI)) +#define HYPOT2(x,y) (sq(x)+sq(y)) + +#define CIRCLE_AREA(R) (float(M_PI) * sq(float(R))) +#define CIRCLE_CIRC(R) (2 * float(M_PI) * float(R)) + +#define SIGN(a) ({__typeof__(a) _a = (a); (_a>0)-(_a<0);}) +#define IS_POWER_OF_2(x) ((x) && !((x) & ((x) - 1))) + +// Macros to constrain values +#ifdef __cplusplus + + // C++11 solution that is standards compliant. + template <class V, class N> static inline constexpr void NOLESS(V& v, const N n) { + if (n > v) v = n; + } + template <class V, class N> static inline constexpr void NOMORE(V& v, const N n) { + if (n < v) v = n; + } + template <class V, class N1, class N2> static inline constexpr void LIMIT(V& v, const N1 n1, const N2 n2) { + if (n1 > v) v = n1; + else if (n2 < v) v = n2; + } + +#else + + #define NOLESS(v, n) \ + do{ \ + __typeof__(n) _n = (n); \ + if (_n > v) v = _n; \ + }while(0) + + #define NOMORE(v, n) \ + do{ \ + __typeof__(n) _n = (n); \ + if (_n < v) v = _n; \ + }while(0) + + #define LIMIT(v, n1, n2) \ + do{ \ + __typeof__(n1) _n1 = (n1); \ + __typeof__(n2) _n2 = (n2); \ + if (_n1 > v) v = _n1; \ + else if (_n2 < v) v = _n2; \ + }while(0) + +#endif + +// Macros to chain up to 14 conditions +#define _DO_1(W,C,A) (_##W##_1(A)) +#define _DO_2(W,C,A,B) (_##W##_1(A) C _##W##_1(B)) +#define _DO_3(W,C,A,V...) (_##W##_1(A) C _DO_2(W,C,V)) +#define _DO_4(W,C,A,V...) (_##W##_1(A) C _DO_3(W,C,V)) +#define _DO_5(W,C,A,V...) (_##W##_1(A) C _DO_4(W,C,V)) +#define _DO_6(W,C,A,V...) (_##W##_1(A) C _DO_5(W,C,V)) +#define _DO_7(W,C,A,V...) (_##W##_1(A) C _DO_6(W,C,V)) +#define _DO_8(W,C,A,V...) (_##W##_1(A) C _DO_7(W,C,V)) +#define _DO_9(W,C,A,V...) (_##W##_1(A) C _DO_8(W,C,V)) +#define _DO_10(W,C,A,V...) (_##W##_1(A) C _DO_9(W,C,V)) +#define _DO_11(W,C,A,V...) (_##W##_1(A) C _DO_10(W,C,V)) +#define _DO_12(W,C,A,V...) (_##W##_1(A) C _DO_11(W,C,V)) +#define _DO_13(W,C,A,V...) (_##W##_1(A) C _DO_12(W,C,V)) +#define _DO_14(W,C,A,V...) (_##W##_1(A) C _DO_13(W,C,V)) +#define _DO_15(W,C,A,V...) (_##W##_1(A) C _DO_14(W,C,V)) +#define __DO_N(W,C,N,V...) _DO_##N(W,C,V) +#define _DO_N(W,C,N,V...) __DO_N(W,C,N,V) +#define DO(W,C,V...) (_DO_N(W,C,NUM_ARGS(V),V)) + +// Macros to support option testing +#define _CAT(a,V...) a##V +#define CAT(a,V...) _CAT(a,V) + +#define _ISENA_ ~,1 +#define _ISENA_1 ~,1 +#define _ISENA_0x1 ~,1 +#define _ISENA_true ~,1 +#define _ISENA(V...) IS_PROBE(V) + +#define _ENA_1(O) _ISENA(CAT(_IS,CAT(ENA_, O))) +#define _DIS_1(O) NOT(_ENA_1(O)) +#define ENABLED(V...) DO(ENA,&&,V) +#define DISABLED(V...) DO(DIS,&&,V) +#define COUNT_ENABLED(V...) DO(ENA,+,V) + +#define TERN(O,A,B) _TERN(_ENA_1(O),B,A) // OPTION converted to '0' or '1' +#define TERN0(O,A) _TERN(_ENA_1(O),0,A) // OPTION converted to A or '0' +#define TERN1(O,A) _TERN(_ENA_1(O),1,A) // OPTION converted to A or '1' +#define TERN_(O,A) _TERN(_ENA_1(O),,A) // OPTION converted to A or '<nul>' +#define _TERN(E,V...) __TERN(_CAT(T_,E),V) // Prepend 'T_' to get 'T_0' or 'T_1' +#define __TERN(T,V...) ___TERN(_CAT(_NO,T),V) // Prepend '_NO' to get '_NOT_0' or '_NOT_1' +#define ___TERN(P,V...) THIRD(P,V) // If first argument has a comma, A. Else B. + +#define IF_ENABLED TERN_ +#define IF_DISABLED(O,A) TERN(O,,A) + +#define ANY(V...) !DISABLED(V) +#define NONE(V...) DISABLED(V) +#define ALL(V...) ENABLED(V) +#define BOTH(V1,V2) ALL(V1,V2) +#define EITHER(V1,V2) ANY(V1,V2) +#define MANY(V...) (COUNT_ENABLED(V) > 1) + +// Macros to support pins/buttons exist testing +#define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0) +#define _PINEX_1 PIN_EXISTS +#define PINS_EXIST(V...) DO(PINEX,&&,V) +#define ANY_PIN(V...) DO(PINEX,||,V) + +#define BUTTON_EXISTS(BN) (defined(BTN_##BN) && BTN_##BN >= 0) +#define _BTNEX_1 BUTTON_EXISTS +#define BUTTONS_EXIST(V...) DO(BTNEX,&&,V) +#define ANY_BUTTON(V...) DO(BTNEX,||,V) + +#define WITHIN(N,L,H) ((N) >= (L) && (N) <= (H)) +#define ISEOL(C) ((C) == '\n' || (C) == '\r') +#define NUMERIC(a) WITHIN(a, '0', '9') +#define DECIMAL(a) (NUMERIC(a) || a == '.') +#define HEXCHR(a) (NUMERIC(a) ? (a) - '0' : WITHIN(a, 'a', 'f') ? ((a) - 'a' + 10) : WITHIN(a, 'A', 'F') ? ((a) - 'A' + 10) : -1) +#define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-' || (a) == '+') +#define DECIMAL_SIGNED(a) (DECIMAL(a) || (a) == '-' || (a) == '+') +#define COUNT(a) (sizeof(a)/sizeof(*a)) +#define ZERO(a) memset(a,0,sizeof(a)) +#define COPY(a,b) do{ \ + static_assert(sizeof(a[0]) == sizeof(b[0]), "COPY: '" STRINGIFY(a) "' and '" STRINGIFY(b) "' types (sizes) don't match!"); \ + memcpy(&a[0],&b[0],_MIN(sizeof(a),sizeof(b))); \ + }while(0) + +// Macros for initializing arrays +#define LIST_16(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P +#define LIST_15(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O +#define LIST_14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N +#define LIST_13(A,B,C,D,E,F,G,H,I,J,K,L,M,...) A,B,C,D,E,F,G,H,I,J,K,L,M +#define LIST_12(A,B,C,D,E,F,G,H,I,J,K,L,...) A,B,C,D,E,F,G,H,I,J,K,L +#define LIST_11(A,B,C,D,E,F,G,H,I,J,K,...) A,B,C,D,E,F,G,H,I,J,K +#define LIST_10(A,B,C,D,E,F,G,H,I,J,...) A,B,C,D,E,F,G,H,I,J +#define LIST_9( A,B,C,D,E,F,G,H,I,...) A,B,C,D,E,F,G,H,I +#define LIST_8( A,B,C,D,E,F,G,H,...) A,B,C,D,E,F,G,H +#define LIST_7( A,B,C,D,E,F,G,...) A,B,C,D,E,F,G +#define LIST_6( A,B,C,D,E,F,...) A,B,C,D,E,F +#define LIST_5( A,B,C,D,E,...) A,B,C,D,E +#define LIST_4( A,B,C,D,...) A,B,C,D +#define LIST_3( A,B,C,...) A,B,C +#define LIST_2( A,B,...) A,B +#define LIST_1( A,...) A + +#define _LIST_N(N,V...) LIST_##N(V) +#define LIST_N(N,V...) _LIST_N(N,V) +#define ARRAY_N(N,V...) { _LIST_N(N,V) } + +#define _JOIN_1(O) (O) +#define JOIN_N(N,C,V...) (DO(JOIN,C,LIST_N(N,V))) + +#define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=(S); VAR<=(N); VAR++) +#define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=(S); VAR<(N); VAR++) +#define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N) +#define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N) + +#define NOOP (void(0)) + +#define CEILING(x,y) (((x) + (y) - 1) / (y)) + +#undef ABS +#ifdef __cplusplus + template <class T> static inline constexpr const T ABS(const T v) { return v >= 0 ? v : -v; } +#else + #define ABS(a) ({__typeof__(a) _a = (a); _a >= 0 ? _a : -_a;}) +#endif + +#define UNEAR_ZERO(x) ((x) < 0.000001f) +#define NEAR_ZERO(x) WITHIN(x, -0.000001f, 0.000001f) +#define NEAR(x,y) NEAR_ZERO((x)-(y)) + +#define RECIPROCAL(x) (NEAR_ZERO(x) ? 0 : (1 / float(x))) +#define FIXFLOAT(f) ({__typeof__(f) _f = (f); _f + (_f < 0 ? -0.0000005f : 0.0000005f);}) + +// +// Maths macros that can be overridden by HAL +// +#define ACOS(x) acosf(x) +#define ATAN2(y, x) atan2f(y, x) +#define POW(x, y) powf(x, y) +#define SQRT(x) sqrtf(x) +#define RSQRT(x) (1.0f / sqrtf(x)) +#define CEIL(x) ceilf(x) +#define FLOOR(x) floorf(x) +#define TRUNC(x) truncf(x) +#define LROUND(x) lroundf(x) +#define FMOD(x, y) fmodf(x, y) +#define HYPOT(x,y) SQRT(HYPOT2(x,y)) + +// Use NUM_ARGS(__VA_ARGS__) to get the number of variadic arguments +#define _NUM_ARGS(_,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,OUT,...) OUT +#define NUM_ARGS(V...) _NUM_ARGS(0,V,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0) + +#ifdef __cplusplus + + #ifndef _MINMAX_H_ + #define _MINMAX_H_ + + extern "C++" { + + // C++11 solution that is standards compliant. Return type is deduced automatically + template <class L, class R> static inline constexpr auto _MIN(const L lhs, const R rhs) -> decltype(lhs + rhs) { + return lhs < rhs ? lhs : rhs; + } + template <class L, class R> static inline constexpr auto _MAX(const L lhs, const R rhs) -> decltype(lhs + rhs) { + return lhs > rhs ? lhs : rhs; + } + template<class T, class ... Ts> static inline constexpr const T _MIN(T V, Ts... Vs) { return _MIN(V, _MIN(Vs...)); } + template<class T, class ... Ts> static inline constexpr const T _MAX(T V, Ts... Vs) { return _MAX(V, _MAX(Vs...)); } + + } + + #endif + + // C++11 solution that is standard compliant. <type_traits> is not available on all platform + namespace Private { + template<bool, typename _Tp = void> struct enable_if { }; + template<typename _Tp> struct enable_if<true, _Tp> { typedef _Tp type; }; + } + // C++11 solution using SFINAE to detect the existance of a member in a class at compile time. + // It creates a HasMember<Type> structure containing 'value' set to true if the member exists + #define HAS_MEMBER_IMPL(Member) \ + namespace Private { \ + template <typename Type, typename Yes=char, typename No=long> struct HasMember_ ## Member { \ + template <typename C> static Yes& test( decltype(&C::Member) ) ; \ + template <typename C> static No& test(...); \ + enum { value = sizeof(test<Type>(0)) == sizeof(Yes) }; }; \ + } + + // Call the method if it exists, but do nothing if it does not. The method is detected at compile time. + // If the method exists, this is inlined and does not cost anything. Else, an "empty" wrapper is created, returning a default value + #define CALL_IF_EXISTS_IMPL(Return, Method, ...) \ + HAS_MEMBER_IMPL(Method) \ + namespace Private { \ + template <typename T, typename ... Args> FORCE_INLINE typename enable_if<HasMember_ ## Method <T>::value, Return>::type Call_ ## Method(T * t, Args... a) { return static_cast<Return>(t->Method(a...)); } \ + _UNUSED static Return Call_ ## Method(...) { return __VA_ARGS__; } \ + } + #define CALL_IF_EXISTS(Return, That, Method, ...) \ + static_cast<Return>(Private::Call_ ## Method(That, ##__VA_ARGS__)) + +#else + + #define MIN_2(a,b) ((a)<(b)?(a):(b)) + #define MIN_3(a,V...) MIN_2(a,MIN_2(V)) + #define MIN_4(a,V...) MIN_2(a,MIN_3(V)) + #define MIN_5(a,V...) MIN_2(a,MIN_4(V)) + #define MIN_6(a,V...) MIN_2(a,MIN_5(V)) + #define MIN_7(a,V...) MIN_2(a,MIN_6(V)) + #define MIN_8(a,V...) MIN_2(a,MIN_7(V)) + #define MIN_9(a,V...) MIN_2(a,MIN_8(V)) + #define MIN_10(a,V...) MIN_2(a,MIN_9(V)) + #define __MIN_N(N,V...) MIN_##N(V) + #define _MIN_N(N,V...) __MIN_N(N,V) + #define _MIN(V...) _MIN_N(NUM_ARGS(V), V) + + #define MAX_2(a,b) ((a)>(b)?(a):(b)) + #define MAX_3(a,V...) MAX_2(a,MAX_2(V)) + #define MAX_4(a,V...) MAX_2(a,MAX_3(V)) + #define MAX_5(a,V...) MAX_2(a,MAX_4(V)) + #define MAX_6(a,V...) MAX_2(a,MAX_5(V)) + #define MAX_7(a,V...) MAX_2(a,MAX_6(V)) + #define MAX_8(a,V...) MAX_2(a,MAX_7(V)) + #define MAX_9(a,V...) MAX_2(a,MAX_8(V)) + #define MAX_10(a,V...) MAX_2(a,MAX_9(V)) + #define __MAX_N(N,V...) MAX_##N(V) + #define _MAX_N(N,V...) __MAX_N(N,V) + #define _MAX(V...) _MAX_N(NUM_ARGS(V), V) + +#endif + +// Macros for adding +#define INC_0 1 +#define INC_1 2 +#define INC_2 3 +#define INC_3 4 +#define INC_4 5 +#define INC_5 6 +#define INC_6 7 +#define INC_7 8 +#define INC_8 9 +#define INC_9 10 +#define INC_10 11 +#define INC_11 12 +#define INC_12 13 +#define INC_13 14 +#define INC_14 15 +#define INC_15 16 +#define INCREMENT_(n) INC_##n +#define INCREMENT(n) INCREMENT_(n) + +#define ADD0(N) N +#define ADD1(N) INCREMENT_(N) +#define ADD2(N) ADD1(ADD1(N)) +#define ADD3(N) ADD1(ADD2(N)) +#define ADD4(N) ADD2(ADD2(N)) +#define ADD5(N) ADD2(ADD3(N)) +#define ADD6(N) ADD3(ADD3(N)) +#define ADD7(N) ADD3(ADD4(N)) +#define ADD8(N) ADD4(ADD4(N)) +#define ADD9(N) ADD4(ADD5(N)) +#define ADD10(N) ADD5(ADD5(N)) + +// Macros for subtracting +#define DEC_0 0 +#define DEC_1 0 +#define DEC_2 1 +#define DEC_3 2 +#define DEC_4 3 +#define DEC_5 4 +#define DEC_6 5 +#define DEC_7 6 +#define DEC_8 7 +#define DEC_9 8 +#define DEC_10 9 +#define DEC_11 10 +#define DEC_12 11 +#define DEC_13 12 +#define DEC_14 13 +#define DEC_15 14 +#define DECREMENT_(n) DEC_##n +#define DECREMENT(n) DECREMENT_(n) + +#define SUB0(N) N +#define SUB1(N) DECREMENT_(N) +#define SUB2(N) SUB1(SUB1(N)) +#define SUB3(N) SUB1(SUB2(N)) +#define SUB4(N) SUB2(SUB2(N)) +#define SUB5(N) SUB2(SUB3(N)) +#define SUB6(N) SUB3(SUB3(N)) +#define SUB7(N) SUB3(SUB4(N)) +#define SUB8(N) SUB4(SUB4(N)) +#define SUB9(N) SUB4(SUB5(N)) +#define SUB10(N) SUB5(SUB5(N)) + +// +// Primitives supporting precompiler REPEAT +// +#define FIRST(a,...) a +#define SECOND(a,b,...) b +#define THIRD(a,b,c,...) c + +// Defer expansion +#define EMPTY() +#define DEFER(M) M EMPTY() +#define DEFER2(M) M EMPTY EMPTY()() +#define DEFER3(M) M EMPTY EMPTY EMPTY()()() +#define DEFER4(M) M EMPTY EMPTY EMPTY EMPTY()()()() + +// Force define expansion +#define EVAL(V...) EVAL16(V) +#define EVAL1024(V...) EVAL512(EVAL512(V)) +#define EVAL512(V...) EVAL256(EVAL256(V)) +#define EVAL256(V...) EVAL128(EVAL128(V)) +#define EVAL128(V...) EVAL64(EVAL64(V)) +#define EVAL64(V...) EVAL32(EVAL32(V)) +#define EVAL32(V...) EVAL16(EVAL16(V)) +#define EVAL16(V...) EVAL8(EVAL8(V)) +#define EVAL8(V...) EVAL4(EVAL4(V)) +#define EVAL4(V...) EVAL2(EVAL2(V)) +#define EVAL2(V...) EVAL1(EVAL1(V)) +#define EVAL1(V...) V + +#define IS_PROBE(V...) SECOND(V, 0) // Get the second item passed, or 0 +#define PROBE() ~, 1 // Second item will be 1 if this is passed +#define _NOT_0 PROBE() +#define NOT(x) IS_PROBE(_CAT(_NOT_, x)) // NOT('0') gets '1'. Anything else gets '0'. +#define _BOOL(x) NOT(NOT(x)) // NOT('0') gets '0'. Anything else gets '1'. + +#define IF_ELSE(TF) _IF_ELSE(_BOOL(TF)) +#define _IF_ELSE(TF) _CAT(_IF_, TF) + +#define _IF_1(V...) V _IF_1_ELSE +#define _IF_0(...) _IF_0_ELSE + +#define _IF_1_ELSE(...) +#define _IF_0_ELSE(V...) V + +#define HAS_ARGS(V...) _BOOL(FIRST(_END_OF_ARGUMENTS_ V)()) +#define _END_OF_ARGUMENTS_() 0 + + +// Simple Inline IF Macros, friendly to use in other macro definitions +#define IF(O, A, B) ((O) ? (A) : (B)) +#define IF_0(O, A) IF(O, A, 0) +#define IF_1(O, A) IF(O, A, 1) + +// +// REPEAT core macros. Recurse N times with ascending I. +// + +// Call OP(I) N times with ascending counter. +#define _REPEAT(_RPT_I,_RPT_N,_RPT_OP) \ + _RPT_OP(_RPT_I) \ + IF_ELSE(SUB1(_RPT_N)) \ + ( DEFER2(__REPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \ + ( /* Do nothing */ ) +#define __REPEAT() _REPEAT + +// Call OP(I, ...) N times with ascending counter. +#define _REPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \ + _RPT_OP(_RPT_I,V) \ + IF_ELSE(SUB1(_RPT_N)) \ + ( DEFER2(__REPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \ + ( /* Do nothing */ ) +#define __REPEAT2() _REPEAT2 + +// Repeat a macro passing S...N-1. +#define REPEAT_S(S,N,OP) EVAL(_REPEAT(S,SUB##S(N),OP)) +#define REPEAT(N,OP) REPEAT_S(0,N,OP) + +// Repeat a macro passing 0...N-1 plus additional arguments. +#define REPEAT2_S(S,N,OP,V...) EVAL(_REPEAT2(S,SUB##S(N),OP,V)) +#define REPEAT2(N,OP,V...) REPEAT2_S(0,N,OP,V) + +// Use RREPEAT macros with REPEAT macros for nesting +#define _RREPEAT(_RPT_I,_RPT_N,_RPT_OP) \ + _RPT_OP(_RPT_I) \ + IF_ELSE(SUB1(_RPT_N)) \ + ( DEFER2(__RREPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \ + ( /* Do nothing */ ) +#define __RREPEAT() _RREPEAT +#define _RREPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \ + _RPT_OP(_RPT_I,V) \ + IF_ELSE(SUB1(_RPT_N)) \ + ( DEFER2(__RREPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \ + ( /* Do nothing */ ) +#define __RREPEAT2() _RREPEAT2 +#define RREPEAT_S(S,N,OP) EVAL1024(_RREPEAT(S,SUB##S(N),OP)) +#define RREPEAT(N,OP) RREPEAT_S(0,N,OP) +#define RREPEAT2_S(S,N,OP,V...) EVAL1024(_RREPEAT2(S,SUB##S(N),OP,V)) +#define RREPEAT2(N,OP,V...) RREPEAT2_S(0,N,OP,V) + +// See https://github.com/swansontec/map-macro +#define MAP_OUT +#define MAP_END(...) +#define MAP_GET_END() 0, MAP_END +#define MAP_NEXT0(test, next, ...) next MAP_OUT +#define MAP_NEXT1(test, next) MAP_NEXT0 (test, next, 0) +#define MAP_NEXT(test, next) MAP_NEXT1 (MAP_GET_END test, next) +#define MAP0(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP1) (f, peek, __VA_ARGS__) +#define MAP1(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP0) (f, peek, __VA_ARGS__) +#define MAP(f, ...) EVAL512 (MAP1 (f, __VA_ARGS__, (), 0)) diff --git a/Marlin/src/core/millis_t.h b/Marlin/src/core/millis_t.h new file mode 100644 index 0000000..95bc40e --- /dev/null +++ b/Marlin/src/core/millis_t.h @@ -0,0 +1,33 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include <stdint.h> + +typedef uint32_t millis_t; + +#define SEC_TO_MS(N) millis_t((N)*1000UL) +#define MIN_TO_MS(N) SEC_TO_MS((N)*60UL) +#define MS_TO_SEC(N) millis_t((N)/1000UL) + +#define PENDING(NOW,SOON) ((int32_t)(NOW-(SOON))<0) +#define ELAPSED(NOW,SOON) (!PENDING(NOW,SOON)) diff --git a/Marlin/src/core/multi_language.h b/Marlin/src/core/multi_language.h new file mode 100644 index 0000000..5a26edf --- /dev/null +++ b/Marlin/src/core/multi_language.h @@ -0,0 +1,86 @@ +/******************** + * multi_language.h * + ********************/ + +/**************************************************************************** + * Written By Marcio Teixeira 2019 - Aleph Objects, Inc. * + * * + * This program is free software: you can redistribute it and/or modify * + * it under the terms of the GNU General Public License as published by * + * the Free Software Foundation, either version 3 of the License, or * + * (at your option) any later version. * + * * + * This program is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * To view a copy of the GNU General Public License, go to the following * + * location: <https://www.gnu.org/licenses/>. * + ****************************************************************************/ +#pragma once + +#include "../inc/MarlinConfigPre.h" + +typedef const char Language_Str[]; + +#ifdef LCD_LANGUAGE_5 + #define NUM_LANGUAGES 5 +#elif defined(LCD_LANGUAGE_4) + #define NUM_LANGUAGES 4 +#elif defined(LCD_LANGUAGE_3) + #define NUM_LANGUAGES 3 +#elif defined(LCD_LANGUAGE_2) + #define NUM_LANGUAGES 2 +#else + #define NUM_LANGUAGES 1 +#endif + +// Setting the unused languages equal to each other allows +// the compiler to optimize away the conditionals + +#ifndef LCD_LANGUAGE_2 + #define LCD_LANGUAGE_2 LCD_LANGUAGE +#endif + +#ifndef LCD_LANGUAGE_3 + #define LCD_LANGUAGE_3 LCD_LANGUAGE_2 +#endif + +#ifndef LCD_LANGUAGE_4 + #define LCD_LANGUAGE_4 LCD_LANGUAGE_3 +#endif + +#ifndef LCD_LANGUAGE_5 + #define LCD_LANGUAGE_5 LCD_LANGUAGE_4 +#endif + +#define _GET_LANG(LANG) Language_##LANG +#define GET_LANG(LANG) _GET_LANG(LANG) + +#if NUM_LANGUAGES > 1 + #define HAS_MULTI_LANGUAGE 1 + #define GET_TEXT(MSG) ( \ + ui.language == 0 ? GET_LANG(LCD_LANGUAGE )::MSG : \ + ui.language == 1 ? GET_LANG(LCD_LANGUAGE_2)::MSG : \ + ui.language == 2 ? GET_LANG(LCD_LANGUAGE_3)::MSG : \ + ui.language == 3 ? GET_LANG(LCD_LANGUAGE_4)::MSG : \ + GET_LANG(LCD_LANGUAGE_5)::MSG ) + #define MAX_LANG_CHARSIZE _MAX(GET_LANG(LCD_LANGUAGE )::CHARSIZE, \ + GET_LANG(LCD_LANGUAGE_2)::CHARSIZE, \ + GET_LANG(LCD_LANGUAGE_3)::CHARSIZE, \ + GET_LANG(LCD_LANGUAGE_4)::CHARSIZE, \ + GET_LANG(LCD_LANGUAGE_5)::CHARSIZE ) +#else + #define GET_TEXT(MSG) GET_LANG(LCD_LANGUAGE)::MSG + #define MAX_LANG_CHARSIZE LANG_CHARSIZE +#endif +#define GET_TEXT_F(MSG) (const __FlashStringHelper*)GET_TEXT(MSG) + +#define GET_LANGUAGE_NAME(INDEX) GET_LANG(LCD_LANGUAGE_##INDEX)::LANGUAGE +#define LANG_CHARSIZE GET_TEXT(CHARSIZE) +#define USE_WIDE_GLYPH (LANG_CHARSIZE > 2) + +#define MSG_1_LINE(A) A "\0" "\0" +#define MSG_2_LINE(A,B) A "\0" B "\0" +#define MSG_3_LINE(A,B,C) A "\0" B "\0" C diff --git a/Marlin/src/core/serial.cpp b/Marlin/src/core/serial.cpp new file mode 100644 index 0000000..365f28b --- /dev/null +++ b/Marlin/src/core/serial.cpp @@ -0,0 +1,93 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +#include "serial.h" +#include "../inc/MarlinConfig.h" + +#if HAS_ETHERNET + #include "../feature/ethernet.h" +#endif + +uint8_t marlin_debug_flags = MARLIN_DEBUG_NONE; + +// Commonly-used strings in serial output +PGMSTR(NUL_STR, ""); PGMSTR(SP_P_STR, " P"); PGMSTR(SP_T_STR, " T"); +PGMSTR(X_STR, "X"); PGMSTR(Y_STR, "Y"); PGMSTR(Z_STR, "Z"); PGMSTR(E_STR, "E"); +PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMSTR(E_LBL, "E:"); +PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C"); +PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E"); +PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:"); + +#if HAS_MULTI_SERIAL + #ifdef SERIAL_CATCHALL + SerialOutputT multiSerial(MYSERIAL, SERIAL_CATCHALL); + #else + #if HAS_ETHERNET + // Runtime checking of the condition variable + ConditionalSerial<decltype(MYSERIAL1)> serialOut1(ethernet.have_telnet_client, MYSERIAL1, false); // Takes reference here + #else + // Don't pay for runtime checking a true variable, instead use the output directly + #define serialOut1 MYSERIAL1 + #endif + SerialOutputT multiSerial(MYSERIAL0, serialOut1); + #endif +#endif + +void serialprintPGM(PGM_P str) { + while (const char c = pgm_read_byte(str++)) SERIAL_CHAR(c); +} + +void serial_echo_start() { static PGMSTR(echomagic, "echo:"); serialprintPGM(echomagic); } +void serial_error_start() { static PGMSTR(errormagic, "Error:"); serialprintPGM(errormagic); } + +void serial_echopair_PGM(PGM_P const s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_PGM(PGM_P const s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); } +void serial_echopair_PGM(PGM_P const s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_PGM(PGM_P const s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_PGM(PGM_P const s_P, float v) { serialprintPGM(s_P); SERIAL_DECIMAL(v); } +void serial_echopair_PGM(PGM_P const s_P, double v) { serialprintPGM(s_P); SERIAL_DECIMAL(v); } +void serial_echopair_PGM(PGM_P const s_P, unsigned int v) { serialprintPGM(s_P); SERIAL_ECHO(v); } +void serial_echopair_PGM(PGM_P const s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } + +void serial_spaces(uint8_t count) { count *= (PROPORTIONAL_FONT_RATIO); while (count--) SERIAL_CHAR(' '); } + +void serial_ternary(const bool onoff, PGM_P const pre, PGM_P const on, PGM_P const off, PGM_P const post/*=nullptr*/) { + if (pre) serialprintPGM(pre); + serialprintPGM(onoff ? on : off); + if (post) serialprintPGM(post); +} +void serialprint_onoff(const bool onoff) { serialprintPGM(onoff ? PSTR(STR_ON) : PSTR(STR_OFF)); } +void serialprintln_onoff(const bool onoff) { serialprint_onoff(onoff); SERIAL_EOL(); } +void serialprint_truefalse(const bool tf) { serialprintPGM(tf ? PSTR("true") : PSTR("false")); } + +void print_bin(uint16_t val) { + for (uint8_t i = 16; i--;) { + SERIAL_CHAR('0' + TEST(val, i)); + if (!(i & 0x3) && i) SERIAL_CHAR(' '); + } +} + +void print_xyz(const float &x, const float &y, const float &z, PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) { + if (prefix) serialprintPGM(prefix); + SERIAL_ECHOPAIR_P(SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z); + if (suffix) serialprintPGM(suffix); else SERIAL_EOL(); +} diff --git a/Marlin/src/core/serial.h b/Marlin/src/core/serial.h new file mode 100644 index 0000000..4c0c32f --- /dev/null +++ b/Marlin/src/core/serial.h @@ -0,0 +1,335 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "../inc/MarlinConfig.h" +#include "serial_hook.h" + +// Commonly-used strings in serial output +extern const char NUL_STR[], SP_P_STR[], SP_T_STR[], + X_STR[], Y_STR[], Z_STR[], E_STR[], + X_LBL[], Y_LBL[], Z_LBL[], E_LBL[], + SP_A_STR[], SP_B_STR[], SP_C_STR[], + SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[], + SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[]; + +// +// Debugging flags for use by M111 +// +enum MarlinDebugFlags : uint8_t { + MARLIN_DEBUG_NONE = 0, + MARLIN_DEBUG_ECHO = _BV(0), ///< Echo commands in order as they are processed + MARLIN_DEBUG_INFO = _BV(1), ///< Print messages for code that has debug output + MARLIN_DEBUG_ERRORS = _BV(2), ///< Not implemented + MARLIN_DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands + MARLIN_DEBUG_COMMUNICATION = _BV(4), ///< Not implemented + #if ENABLED(DEBUG_LEVELING_FEATURE) + MARLIN_DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling + MARLIN_DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling + #else + MARLIN_DEBUG_LEVELING = 0, + MARLIN_DEBUG_MESH_ADJUST = 0, + #endif + MARLIN_DEBUG_ALL = 0xFF +}; + +extern uint8_t marlin_debug_flags; +#define DEBUGGING(F) (marlin_debug_flags & (MARLIN_DEBUG_## F)) + +// +// Serial redirection +// +typedef int8_t serial_index_t; +#define SERIAL_ALL 0x7F +#if HAS_MULTI_SERIAL + #define _PORT_REDIRECT(n,p) REMEMBER(n,multiSerial.portMask,p) + #define SERIAL_ASSERT(P) if(multiSerial.portMask!=(P)){ debugger(); } + #ifdef SERIAL_CATCHALL + typedef MultiSerial<decltype(MYSERIAL), decltype(SERIAL_CATCHALL), 0> SerialOutputT; + #else + typedef MultiSerial<decltype(MYSERIAL0), TERN(HAS_ETHERNET, ConditionalSerial<decltype(MYSERIAL1)>, decltype(MYSERIAL1)), 0> SerialOutputT; + #endif + extern SerialOutputT multiSerial; + #define SERIAL_IMPL multiSerial +#else + #define _PORT_REDIRECT(n,p) NOOP + #define SERIAL_ASSERT(P) NOOP + #define SERIAL_IMPL MYSERIAL0 +#endif + +#define SERIAL_OUT(WHAT, V...) (void)SERIAL_IMPL.WHAT(V) + +#define PORT_REDIRECT(p) _PORT_REDIRECT(1,p) +#define SERIAL_PORTMASK(P) _BV(P) + +#define SERIAL_ECHO(x) SERIAL_OUT(print, x) +#define SERIAL_ECHO_F(V...) SERIAL_OUT(print, V) +#define SERIAL_ECHOLN(x) SERIAL_OUT(println, x) +#define SERIAL_PRINT(x,b) SERIAL_OUT(print, x, b) +#define SERIAL_PRINTLN(x,b) SERIAL_OUT(println, x, b) +#define SERIAL_FLUSH() SERIAL_OUT(flush) + +#ifdef ARDUINO_ARCH_STM32 + #define SERIAL_FLUSHTX() SERIAL_OUT(flush) +#elif TX_BUFFER_SIZE > 0 + #define SERIAL_FLUSHTX() SERIAL_OUT(flushTX) +#else + #define SERIAL_FLUSHTX() +#endif + +// Print up to 10 chars from a list +#define __CHAR_N(N,V...) _CHAR_##N(V) +#define _CHAR_N(N,V...) __CHAR_N(N,V) +#define _CHAR_1(c) SERIAL_OUT(write, c) +#define _CHAR_2(a,b) do{ _CHAR_1(a); _CHAR_1(b); }while(0) +#define _CHAR_3(a,V...) do{ _CHAR_1(a); _CHAR_2(V); }while(0) +#define _CHAR_4(a,V...) do{ _CHAR_1(a); _CHAR_3(V); }while(0) +#define _CHAR_5(a,V...) do{ _CHAR_1(a); _CHAR_4(V); }while(0) +#define _CHAR_6(a,V...) do{ _CHAR_1(a); _CHAR_5(V); }while(0) +#define _CHAR_7(a,V...) do{ _CHAR_1(a); _CHAR_6(V); }while(0) +#define _CHAR_8(a,V...) do{ _CHAR_1(a); _CHAR_7(V); }while(0) +#define _CHAR_9(a,V...) do{ _CHAR_1(a); _CHAR_8(V); }while(0) +#define _CHAR_10(a,V...) do{ _CHAR_1(a); _CHAR_9(V); }while(0) + +#define SERIAL_CHAR(V...) _CHAR_N(NUM_ARGS(V),V) + +// Print up to 12 pairs of values. Odd elements auto-wrapped in PSTR(). +#define __SEP_N(N,V...) _SEP_##N(V) +#define _SEP_N(N,V...) __SEP_N(N,V) +#define _SEP_1(PRE) SERIAL_ECHOPGM(PRE) +#define _SEP_2(PRE,V) serial_echopair_PGM(PSTR(PRE),V) +#define _SEP_3(a,b,c) do{ _SEP_2(a,b); SERIAL_ECHOPGM(c); }while(0) +#define _SEP_4(a,b,V...) do{ _SEP_2(a,b); _SEP_2(V); }while(0) +#define _SEP_5(a,b,V...) do{ _SEP_2(a,b); _SEP_3(V); }while(0) +#define _SEP_6(a,b,V...) do{ _SEP_2(a,b); _SEP_4(V); }while(0) +#define _SEP_7(a,b,V...) do{ _SEP_2(a,b); _SEP_5(V); }while(0) +#define _SEP_8(a,b,V...) do{ _SEP_2(a,b); _SEP_6(V); }while(0) +#define _SEP_9(a,b,V...) do{ _SEP_2(a,b); _SEP_7(V); }while(0) +#define _SEP_10(a,b,V...) do{ _SEP_2(a,b); _SEP_8(V); }while(0) +#define _SEP_11(a,b,V...) do{ _SEP_2(a,b); _SEP_9(V); }while(0) +#define _SEP_12(a,b,V...) do{ _SEP_2(a,b); _SEP_10(V); }while(0) +#define _SEP_13(a,b,V...) do{ _SEP_2(a,b); _SEP_11(V); }while(0) +#define _SEP_14(a,b,V...) do{ _SEP_2(a,b); _SEP_12(V); }while(0) +#define _SEP_15(a,b,V...) do{ _SEP_2(a,b); _SEP_13(V); }while(0) +#define _SEP_16(a,b,V...) do{ _SEP_2(a,b); _SEP_14(V); }while(0) +#define _SEP_17(a,b,V...) do{ _SEP_2(a,b); _SEP_15(V); }while(0) +#define _SEP_18(a,b,V...) do{ _SEP_2(a,b); _SEP_16(V); }while(0) +#define _SEP_19(a,b,V...) do{ _SEP_2(a,b); _SEP_17(V); }while(0) +#define _SEP_20(a,b,V...) do{ _SEP_2(a,b); _SEP_18(V); }while(0) +#define _SEP_21(a,b,V...) do{ _SEP_2(a,b); _SEP_19(V); }while(0) +#define _SEP_22(a,b,V...) do{ _SEP_2(a,b); _SEP_20(V); }while(0) +#define _SEP_23(a,b,V...) do{ _SEP_2(a,b); _SEP_21(V); }while(0) +#define _SEP_24(a,b,V...) do{ _SEP_2(a,b); _SEP_22(V); }while(0) + +#define SERIAL_ECHOPAIR(V...) _SEP_N(NUM_ARGS(V),V) + +// Print up to 12 pairs of values. Odd elements must be PSTR pointers. +#define __SEP_N_P(N,V...) _SEP_##N##_P(V) +#define _SEP_N_P(N,V...) __SEP_N_P(N,V) +#define _SEP_1_P(PRE) serialprintPGM(PRE) +#define _SEP_2_P(PRE,V) serial_echopair_PGM(PRE,V) +#define _SEP_3_P(a,b,c) do{ _SEP_2_P(a,b); serialprintPGM(c); }while(0) +#define _SEP_4_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_2_P(V); }while(0) +#define _SEP_5_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_3_P(V); }while(0) +#define _SEP_6_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_4_P(V); }while(0) +#define _SEP_7_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_5_P(V); }while(0) +#define _SEP_8_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_6_P(V); }while(0) +#define _SEP_9_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_7_P(V); }while(0) +#define _SEP_10_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_8_P(V); }while(0) +#define _SEP_11_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_9_P(V); }while(0) +#define _SEP_12_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_10_P(V); }while(0) +#define _SEP_13_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_11_P(V); }while(0) +#define _SEP_14_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_12_P(V); }while(0) +#define _SEP_15_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_13_P(V); }while(0) +#define _SEP_16_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_14_P(V); }while(0) +#define _SEP_17_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_15_P(V); }while(0) +#define _SEP_18_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_16_P(V); }while(0) +#define _SEP_19_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_17_P(V); }while(0) +#define _SEP_20_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_18_P(V); }while(0) +#define _SEP_21_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_19_P(V); }while(0) +#define _SEP_22_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_20_P(V); }while(0) +#define _SEP_23_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_21_P(V); }while(0) +#define _SEP_24_P(a,b,V...) do{ _SEP_2_P(a,b); _SEP_22_P(V); }while(0) + +#define SERIAL_ECHOPAIR_P(V...) _SEP_N_P(NUM_ARGS(V),V) + +// Print up to 12 pairs of values followed by newline +#define __SELP_N(N,V...) _SELP_##N(V) +#define _SELP_N(N,V...) __SELP_N(N,V) +#define _SELP_1(PRE) SERIAL_ECHOLNPGM(PRE) +#define _SELP_2(PRE,V) do{ serial_echopair_PGM(PSTR(PRE),V); SERIAL_EOL(); }while(0) +#define _SELP_3(a,b,c) do{ _SEP_2(a,b); SERIAL_ECHOLNPGM(c); }while(0) +#define _SELP_4(a,b,V...) do{ _SEP_2(a,b); _SELP_2(V); }while(0) +#define _SELP_5(a,b,V...) do{ _SEP_2(a,b); _SELP_3(V); }while(0) +#define _SELP_6(a,b,V...) do{ _SEP_2(a,b); _SELP_4(V); }while(0) +#define _SELP_7(a,b,V...) do{ _SEP_2(a,b); _SELP_5(V); }while(0) +#define _SELP_8(a,b,V...) do{ _SEP_2(a,b); _SELP_6(V); }while(0) +#define _SELP_9(a,b,V...) do{ _SEP_2(a,b); _SELP_7(V); }while(0) +#define _SELP_10(a,b,V...) do{ _SEP_2(a,b); _SELP_8(V); }while(0) +#define _SELP_11(a,b,V...) do{ _SEP_2(a,b); _SELP_9(V); }while(0) +#define _SELP_12(a,b,V...) do{ _SEP_2(a,b); _SELP_10(V); }while(0) +#define _SELP_13(a,b,V...) do{ _SEP_2(a,b); _SELP_11(V); }while(0) +#define _SELP_14(a,b,V...) do{ _SEP_2(a,b); _SELP_12(V); }while(0) +#define _SELP_15(a,b,V...) do{ _SEP_2(a,b); _SELP_13(V); }while(0) +#define _SELP_16(a,b,V...) do{ _SEP_2(a,b); _SELP_14(V); }while(0) +#define _SELP_17(a,b,V...) do{ _SEP_2(a,b); _SELP_15(V); }while(0) +#define _SELP_18(a,b,V...) do{ _SEP_2(a,b); _SELP_16(V); }while(0) +#define _SELP_19(a,b,V...) do{ _SEP_2(a,b); _SELP_17(V); }while(0) +#define _SELP_20(a,b,V...) do{ _SEP_2(a,b); _SELP_18(V); }while(0) +#define _SELP_21(a,b,V...) do{ _SEP_2(a,b); _SELP_19(V); }while(0) +#define _SELP_22(a,b,V...) do{ _SEP_2(a,b); _SELP_20(V); }while(0) +#define _SELP_23(a,b,V...) do{ _SEP_2(a,b); _SELP_21(V); }while(0) +#define _SELP_24(a,b,V...) do{ _SEP_2(a,b); _SELP_22(V); }while(0) +#define _SELP_25(a,b,V...) do{ _SEP_2(a,b); _SELP_23(V); }while(0) +#define _SELP_26(a,b,V...) do{ _SEP_2(a,b); _SELP_24(V); }while(0) +#define _SELP_27(a,b,V...) do{ _SEP_2(a,b); _SELP_25(V); }while(0) +#define _SELP_28(a,b,V...) do{ _SEP_2(a,b); _SELP_26(V); }while(0) +#define _SELP_29(a,b,V...) do{ _SEP_2(a,b); _SELP_27(V); }while(0) +#define _SELP_30(a,b,V...) do{ _SEP_2(a,b); _SELP_28(V); }while(0) // Eat two args, pass the rest up + +#define SERIAL_ECHOLNPAIR(V...) _SELP_N(NUM_ARGS(V),V) + +// Print up to 12 pairs of values followed by newline +#define __SELP_N_P(N,V...) _SELP_##N##_P(V) +#define _SELP_N_P(N,V...) __SELP_N_P(N,V) +#define _SELP_1_P(PRE) serialprintPGM(PRE) +#define _SELP_2_P(PRE,V) do{ serial_echopair_PGM(PRE,V); SERIAL_EOL(); }while(0) +#define _SELP_3_P(a,b,c) do{ _SEP_2_P(a,b); serialprintPGM(c); }while(0) +#define _SELP_4_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_2_P(V); }while(0) +#define _SELP_5_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_3_P(V); }while(0) +#define _SELP_6_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_4_P(V); }while(0) +#define _SELP_7_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_5_P(V); }while(0) +#define _SELP_8_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_6_P(V); }while(0) +#define _SELP_9_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_7_P(V); }while(0) +#define _SELP_10_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_8_P(V); }while(0) +#define _SELP_11_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_9_P(V); }while(0) +#define _SELP_12_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_10_P(V); }while(0) +#define _SELP_13_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_11_P(V); }while(0) +#define _SELP_14_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_12_P(V); }while(0) +#define _SELP_15_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_13_P(V); }while(0) +#define _SELP_16_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_14_P(V); }while(0) +#define _SELP_17_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_15_P(V); }while(0) +#define _SELP_18_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_16_P(V); }while(0) +#define _SELP_19_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_17_P(V); }while(0) +#define _SELP_20_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_18_P(V); }while(0) +#define _SELP_21_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_19_P(V); }while(0) +#define _SELP_22_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_20_P(V); }while(0) +#define _SELP_23_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_21_P(V); }while(0) +#define _SELP_24_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_22_P(V); }while(0) +#define _SELP_25_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_23_P(V); }while(0) +#define _SELP_26_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_24_P(V); }while(0) +#define _SELP_27_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_25_P(V); }while(0) +#define _SELP_28_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_26_P(V); }while(0) +#define _SELP_29_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_27_P(V); }while(0) +#define _SELP_30_P(a,b,V...) do{ _SEP_2_P(a,b); _SELP_28_P(V); }while(0) // Eat two args, pass the rest up + +#define SERIAL_ECHOLNPAIR_P(V...) _SELP_N_P(NUM_ARGS(V),V) + +// Print up to 20 comma-separated pairs of values +#define __SLST_N(N,V...) _SLST_##N(V) +#define _SLST_N(N,V...) __SLST_N(N,V) +#define _SLST_1(a) SERIAL_ECHO(a) +#define _SLST_2(a,b) do{ SERIAL_ECHO(a); SERIAL_ECHOPAIR(", ",b); }while(0) +#define _SLST_3(a,b,c) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_1(c); }while(0) +#define _SLST_4(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_2(V); }while(0) +#define _SLST_5(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_3(V); }while(0) +#define _SLST_6(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_4(V); }while(0) +#define _SLST_7(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_5(V); }while(0) +#define _SLST_8(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_6(V); }while(0) +#define _SLST_9(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_7(V); }while(0) +#define _SLST_10(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_8(V); }while(0) +#define _SLST_11(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_9(V); }while(0) +#define _SLST_12(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_10(V); }while(0) +#define _SLST_13(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_11(V); }while(0) +#define _SLST_14(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_12(V); }while(0) +#define _SLST_15(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_13(V); }while(0) +#define _SLST_16(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_14(V); }while(0) +#define _SLST_17(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_15(V); }while(0) +#define _SLST_18(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_16(V); }while(0) +#define _SLST_19(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_17(V); }while(0) +#define _SLST_20(a,b,V...) do{ SERIAL_ECHO(a); _SEP_2(", ",b); _SLST_18(V); }while(0) // Eat two args, pass the rest up + +#define SERIAL_ECHOLIST(pre,V...) do{ SERIAL_ECHOPGM(pre); _SLST_N(NUM_ARGS(V),V); }while(0) +#define SERIAL_ECHOLIST_N(N,V...) _SLST_N(N,LIST_N(N,V)) + +#define SERIAL_ECHOPGM_P(P) (serialprintPGM(P)) +#define SERIAL_ECHOLNPGM_P(P) (serialprintPGM(P "\n")) + +#define SERIAL_ECHOPGM(S) (serialprintPGM(PSTR(S))) +#define SERIAL_ECHOLNPGM(S) (serialprintPGM(PSTR(S "\n"))) + +#define SERIAL_ECHOPAIR_F_P(P,V...) do{ serialprintPGM(P); SERIAL_ECHO_F(V); }while(0) +#define SERIAL_ECHOLNPAIR_F_P(V...) do{ SERIAL_ECHOPAIR_F_P(V); SERIAL_EOL(); }while(0) + +#define SERIAL_ECHOPAIR_F(S,V...) SERIAL_ECHOPAIR_F_P(PSTR(S),V) +#define SERIAL_ECHOLNPAIR_F(V...) do{ SERIAL_ECHOPAIR_F(V); SERIAL_EOL(); }while(0) + +#define SERIAL_ECHO_START() serial_echo_start() +#define SERIAL_ERROR_START() serial_error_start() +#define SERIAL_EOL() SERIAL_CHAR('\n') + +#define SERIAL_ECHO_MSG(V...) do{ SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0) +#define SERIAL_ERROR_MSG(V...) do{ SERIAL_ERROR_START(); SERIAL_ECHOLNPAIR(V); }while(0) + +#define SERIAL_ECHO_SP(C) serial_spaces(C) + +#define SERIAL_ECHO_TERNARY(TF, PRE, ON, OFF, POST) serial_ternary(TF, PSTR(PRE), PSTR(ON), PSTR(OFF), PSTR(POST)) + +#if SERIAL_FLOAT_PRECISION + #define SERIAL_DECIMAL(V) SERIAL_PRINT(V, SERIAL_FLOAT_PRECISION) +#else + #define SERIAL_DECIMAL(V) SERIAL_ECHO(V) +#endif + +// +// Functions for serial printing from PROGMEM. (Saves loads of SRAM.) +// +void serial_echopair_PGM(PGM_P const s_P, const char *v); +void serial_echopair_PGM(PGM_P const s_P, char v); +void serial_echopair_PGM(PGM_P const s_P, int v); +void serial_echopair_PGM(PGM_P const s_P, unsigned int v); +void serial_echopair_PGM(PGM_P const s_P, long v); +void serial_echopair_PGM(PGM_P const s_P, unsigned long v); +void serial_echopair_PGM(PGM_P const s_P, float v); +void serial_echopair_PGM(PGM_P const s_P, double v); +inline void serial_echopair_PGM(PGM_P const s_P, uint8_t v) { serial_echopair_PGM(s_P, (int)v); } +inline void serial_echopair_PGM(PGM_P const s_P, bool v) { serial_echopair_PGM(s_P, (int)v); } +inline void serial_echopair_PGM(PGM_P const s_P, void *v) { serial_echopair_PGM(s_P, (uintptr_t)v); } + +void serialprintPGM(PGM_P str); +void serial_echo_start(); +void serial_error_start(); +void serial_ternary(const bool onoff, PGM_P const pre, PGM_P const on, PGM_P const off, PGM_P const post=nullptr); +void serialprint_onoff(const bool onoff); +void serialprintln_onoff(const bool onoff); +void serialprint_truefalse(const bool tf); +void serial_spaces(uint8_t count); + +void print_bin(const uint16_t val); +void print_xyz(const float &x, const float &y, const float &z, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr); + +inline void print_xyz(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) { + print_xyz(xyz.x, xyz.y, xyz.z, prefix, suffix); +} + +#define SERIAL_POS(SUFFIX,VAR) do { print_xyz(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0) +#define SERIAL_XYZ(PREFIX,V...) do { print_xyz(V, PSTR(PREFIX), nullptr); }while(0) diff --git a/Marlin/src/core/serial_base.h b/Marlin/src/core/serial_base.h new file mode 100644 index 0000000..f52fa11 --- /dev/null +++ b/Marlin/src/core/serial_base.h @@ -0,0 +1,159 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "../inc/MarlinConfigPre.h" + +#if ENABLED(EMERGENCY_PARSER) + #include "../feature/e_parser.h" +#endif + +#ifndef DEC + #define DEC 10 + #define HEX 16 + #define OCT 8 + #define BIN 2 +#endif + +// flushTX is not implemented in all HAL, so use SFINAE to call the method where it is. +CALL_IF_EXISTS_IMPL(void, flushTX ); +CALL_IF_EXISTS_IMPL(bool, connected, true); + +// Using Curiously Recurring Template Pattern here to avoid virtual table cost when compiling. +// Since the real serial class is known at compile time, this results in compiler writing a completely +// efficient code +template <class Child> +struct SerialBase { + #if ENABLED(EMERGENCY_PARSER) + const bool ep_enabled; + EmergencyParser::State emergency_state; + inline bool emergency_parser_enabled() { return ep_enabled; } + SerialBase(bool ep_capable) : ep_enabled(ep_capable), emergency_state(EmergencyParser::State::EP_RESET) {} + #else + SerialBase(const bool) {} + #endif + + // Static dispatch methods below: + // The most important method here is where it all ends to: + size_t write(uint8_t c) { return static_cast<Child*>(this)->write(c); } + // Called when the parser finished processing an instruction, usually build to nothing + void msgDone() { static_cast<Child*>(this)->msgDone(); } + // Called upon initialization + void begin(const long baudRate) { static_cast<Child*>(this)->begin(baudRate); } + // Called upon destruction + void end() { static_cast<Child*>(this)->end(); } + /** Check for available data from the port + @param index The port index, usually 0 */ + bool available(uint8_t index = 0) { return static_cast<Child*>(this)->available(index); } + /** Read a value from the port + @param index The port index, usually 0 */ + int read(uint8_t index = 0) { return static_cast<Child*>(this)->read(index); } + // Check if the serial port is connected (usually bypassed) + bool connected() { return static_cast<Child*>(this)->connected(); } + // Redirect flush + void flush() { static_cast<Child*>(this)->flush(); } + // Not all implementation have a flushTX, so let's call them only if the child has the implementation + void flushTX() { CALL_IF_EXISTS(void, static_cast<Child*>(this), flushTX); } + + // Glue code here + FORCE_INLINE void write(const char* str) { while (*str) write(*str++); } + FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } + FORCE_INLINE void print(const char* str) { write(str); } + NO_INLINE void print(char c, int base = 0) { print((long)c, base); } + NO_INLINE void print(unsigned char c, int base = 0) { print((unsigned long)c, base); } + NO_INLINE void print(int c, int base = DEC) { print((long)c, base); } + NO_INLINE void print(unsigned int c, int base = DEC) { print((unsigned long)c, base); } + void print(unsigned long c, int base = DEC) { printNumber(c, base); } + void print(double c, int digits = 2) { printFloat(c, digits); } + void print(long c, int base = DEC) { + if (!base) { + write(c); + return; + } + if (base == DEC && c < 0) { + write((uint8_t)'-'); c = -c; + } + printNumber(c, base); + } + + NO_INLINE void println(const char s[]) { print(s); println(); } + NO_INLINE void println(char c, int base = 0) { print(c, base); println(); } + NO_INLINE void println(unsigned char c, int base = 0) { print(c, base); println(); } + NO_INLINE void println(int c, int base = DEC) { print(c, base); println(); } + NO_INLINE void println(unsigned int c, int base = DEC) { print(c, base); println(); } + NO_INLINE void println(long c, int base = DEC) { print(c, base); println(); } + NO_INLINE void println(unsigned long c, int base = DEC) { print(c, base); println(); } + NO_INLINE void println(double c, int digits = 2) { print(c, digits); println(); } + NO_INLINE void println() { write('\r'); write('\n'); } + + // Print a number with the given base + void printNumber(unsigned long n, const uint8_t base) { + if (!base) { + write((uint8_t)n); + return; + } + if (n) { + unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 + int8_t i = 0; + while (n) { + buf[i++] = n % base; + n /= base; + } + while (i--) write((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); + } + else write('0'); + } + + // Print a decimal number + void printFloat(double number, uint8_t digits) { + // Handle negative numbers + if (number < 0.0) { + write('-'); + number = -number; + } + + // Round correctly so that print(1.999, 2) prints as "2.00" + double rounding = 0.5; + LOOP_L_N(i, digits) rounding *= 0.1; + number += rounding; + + // Extract the integer part of the number and print it + unsigned long int_part = (unsigned long)number; + double remainder = number - (double)int_part; + printNumber(int_part, 10); + + // Print the decimal point, but only if there are digits beyond + if (digits) { + write('.'); + // Extract digits from the remainder one at a time + while (digits--) { + remainder *= 10.0; + int toPrint = int(remainder); + printNumber(toPrint, 10); + remainder -= toPrint; + } + } + } +}; + +// All serial instances will be built by chaining the features required for the function in a form of a template +// type definition diff --git a/Marlin/src/core/serial_hook.h b/Marlin/src/core/serial_hook.h new file mode 100644 index 0000000..45e64d7 --- /dev/null +++ b/Marlin/src/core/serial_hook.h @@ -0,0 +1,235 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "serial_base.h" + +// The most basic serial class: it dispatch to the base serial class with no hook whatsoever. This will compile to nothing but the base serial class +template <class SerialT> +struct BaseSerial : public SerialBase< BaseSerial<SerialT> >, public SerialT { + typedef SerialBase< BaseSerial<SerialT> > BaseClassT; + + // It's required to implement a write method here to help compiler disambiguate what method to call + using SerialT::write; + using SerialT::flush; + + void msgDone() {} + + bool available(uint8_t index) { return index == 0 && SerialT::available(); } + int read(uint8_t index) { return index == 0 ? SerialT::read() : -1; } + bool connected() { return CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected);; } + // We have 2 implementation of the same method in both base class, let's say which one we want + using SerialT::available; + using SerialT::read; + using SerialT::begin; + using SerialT::end; + + using BaseClassT::print; + using BaseClassT::println; + + BaseSerial(const bool e) : BaseClassT(e) {} + + // Forward constructor + template <typename... Args> + BaseSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {} +}; + +// A serial with a condition checked at runtime for its output +// A bit less efficient than static dispatching but since it's only used for ethernet's serial output right now, it's ok. +template <class SerialT> +struct ConditionalSerial : public SerialBase< ConditionalSerial<SerialT> > { + typedef SerialBase< ConditionalSerial<SerialT> > BaseClassT; + + bool & condition; + SerialT & out; + NO_INLINE size_t write(uint8_t c) { if (condition) return out.write(c); return 0; } + void flush() { if (condition) out.flush(); } + void begin(long br) { out.begin(br); } + void end() { out.end(); } + + void msgDone() {} + bool connected() { return CALL_IF_EXISTS(bool, &out, connected); } + + bool available(uint8_t index) { return index == 0 && out.available(); } + int read(uint8_t index) { return index == 0 ? out.read() : -1; } + using BaseClassT::available; + using BaseClassT::read; + + ConditionalSerial(bool & conditionVariable, SerialT & out, const bool e) : BaseClassT(e), condition(conditionVariable), out(out) {} +}; + +// A simple foward class that taking a reference to an existing serial instance (likely created in their respective framework) +template <class SerialT> +struct ForwardSerial : public SerialBase< ForwardSerial<SerialT> > { + typedef SerialBase< ForwardSerial<SerialT> > BaseClassT; + + SerialT & out; + NO_INLINE size_t write(uint8_t c) { return out.write(c); } + void flush() { out.flush(); } + void begin(long br) { out.begin(br); } + void end() { out.end(); } + + void msgDone() {} + // Existing instances implement Arduino's operator bool, so use that if it's available + bool connected() { return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, &out, connected) : (bool)out; } + + bool available(uint8_t index) { return index == 0 && out.available(); } + int read(uint8_t index) { return index == 0 ? out.read() : -1; } + bool available() { return out.available(); } + int read() { return out.read(); } + + ForwardSerial(const bool e, SerialT & out) : BaseClassT(e), out(out) {} +}; + +// A class that's can be hooked and unhooked at runtime, useful to capturing the output of the serial interface +template <class SerialT> +struct RuntimeSerial : public SerialBase< RuntimeSerial<SerialT> >, public SerialT { + typedef SerialBase< RuntimeSerial<SerialT> > BaseClassT; + typedef void (*WriteHook)(void * userPointer, uint8_t c); + typedef void (*EndOfMessageHook)(void * userPointer); + + WriteHook writeHook; + EndOfMessageHook eofHook; + void * userPointer; + + NO_INLINE size_t write(uint8_t c) { + if (writeHook) writeHook(userPointer, c); + return SerialT::write(c); + } + + NO_INLINE void msgDone() { + if (eofHook) eofHook(userPointer); + } + + bool available(uint8_t index) { return index == 0 && SerialT::available(); } + int read(uint8_t index) { return index == 0 ? SerialT::read() : -1; } + using SerialT::available; + using SerialT::read; + using SerialT::flush; + using SerialT::begin; + using SerialT::end; + + using BaseClassT::print; + using BaseClassT::println; + + + // Underlying implementation might use Arduino's bool operator + bool connected() { + return Private::HasMember_connected<SerialT>::value ? CALL_IF_EXISTS(bool, static_cast<SerialT*>(this), connected) : static_cast<SerialT*>(this)->operator bool(); + } + + void setHook(WriteHook writeHook = 0, EndOfMessageHook eofHook = 0, void * userPointer = 0) { + // Order is important here as serial code can be called inside interrupts + // When setting a hook, the user pointer must be set first so if writeHook is called as soon as it's set, it'll be valid + if (userPointer) this->userPointer = userPointer; + this->writeHook = writeHook; + this->eofHook = eofHook; + // Order is important here because of asynchronous access here + // When unsetting a hook, the user pointer must be unset last so that any pending writeHook is still using the old pointer + if (!userPointer) this->userPointer = 0; + } + + RuntimeSerial(const bool e) : BaseClassT(e), writeHook(0), eofHook(0), userPointer(0) {} + + // Forward constructor + template <typename... Args> + RuntimeSerial(const bool e, Args... args) : BaseClassT(e), SerialT(args...) {} +}; + +// A class that's duplicating its output conditionally to 2 serial interface +template <class Serial0T, class Serial1T, const uint8_t offset = 0> +struct MultiSerial : public SerialBase< MultiSerial<Serial0T, Serial1T, offset> > { + typedef SerialBase< MultiSerial<Serial0T, Serial1T, offset> > BaseClassT; + + uint8_t portMask; + Serial0T & serial0; + Serial1T & serial1; + + enum Masks { + FirstOutputMask = (1 << offset), + SecondOutputMask = (1 << (offset + 1)), + AllMask = FirstOutputMask | SecondOutputMask, + }; + + NO_INLINE size_t write(uint8_t c) { + size_t ret = 0; + if (portMask & FirstOutputMask) ret = serial0.write(c); + if (portMask & SecondOutputMask) ret = serial1.write(c) | ret; + return ret; + } + NO_INLINE void msgDone() { + if (portMask & FirstOutputMask) serial0.msgDone(); + if (portMask & SecondOutputMask) serial1.msgDone(); + } + bool available(uint8_t index) { + switch(index) { + case 0 + offset: return serial0.available(); + case 1 + offset: return serial1.available(); + default: return false; + } + } + NO_INLINE int read(uint8_t index) { + switch(index) { + case 0 + offset: return serial0.read(); + case 1 + offset: return serial1.read(); + default: return -1; + } + } + void begin(const long br) { + if (portMask & FirstOutputMask) serial0.begin(br); + if (portMask & SecondOutputMask) serial1.begin(br); + } + void end() { + if (portMask & FirstOutputMask) serial0.end(); + if (portMask & SecondOutputMask) serial1.end(); + } + bool connected() { + bool ret = true; + if (portMask & FirstOutputMask) ret = CALL_IF_EXISTS(bool, &serial0, connected); + if (portMask & SecondOutputMask) ret = ret && CALL_IF_EXISTS(bool, &serial1, connected); + return ret; + } + + using BaseClassT::available; + using BaseClassT::read; + + // Redirect flush + NO_INLINE void flush() { + if (portMask & FirstOutputMask) serial0.flush(); + if (portMask & SecondOutputMask) serial1.flush(); + } + NO_INLINE void flushTX() { + if (portMask & FirstOutputMask) CALL_IF_EXISTS(void, &serial0, flushTX); + if (portMask & SecondOutputMask) CALL_IF_EXISTS(void, &serial1, flushTX); + } + + MultiSerial(Serial0T & serial0, Serial1T & serial1, int8_t mask = AllMask, const bool e = false) : + BaseClassT(e), + portMask(mask), serial0(serial0), serial1(serial1) {} +}; + +// Build the actual serial object depending on current configuration +#define Serial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, BaseSerial) +#define ForwardSerial0Type TERN(SERIAL_RUNTIME_HOOK, RuntimeSerial, ForwardSerial) +#ifdef HAS_MULTI_SERIAL + #define Serial1Type ConditionalSerial +#endif diff --git a/Marlin/src/core/types.h b/Marlin/src/core/types.h new file mode 100644 index 0000000..20519e1 --- /dev/null +++ b/Marlin/src/core/types.h @@ -0,0 +1,503 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include <math.h> +#include <stddef.h> + +#include "../inc/MarlinConfigPre.h" + +class __FlashStringHelper; +typedef const __FlashStringHelper *progmem_str; + +// +// Enumerated axis indices +// +// - X_AXIS, Y_AXIS, and Z_AXIS should be used for axes in Cartesian space +// - A_AXIS, B_AXIS, and C_AXIS should be used for Steppers, corresponding to XYZ on Cartesians +// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics +// +enum AxisEnum : uint8_t { + X_AXIS = 0, A_AXIS = 0, + Y_AXIS = 1, B_AXIS = 1, + Z_AXIS = 2, C_AXIS = 2, + E_AXIS = 3, + X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 6, + E0_AXIS = 3, + E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS, + ALL_AXES = 0xFE, NO_AXIS = 0xFF +}; + +// +// Loop over XYZE axes +// +#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS) +#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS) +#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N) +#define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS) +#define LOOP_ABCE(VAR) LOOP_S_LE_N(VAR, A_AXIS, E_AXIS) +#define LOOP_ABCE_N(VAR) LOOP_S_L_N(VAR, A_AXIS, XYZE_N) + +// +// Conditional type assignment magic. For example... +// +// typename IF<(MYOPT==12), int, float>::type myvar; +// +template <bool, class L, class R> +struct IF { typedef R type; }; +template <class L, class R> +struct IF<true, L, R> { typedef L type; }; + +// +// feedRate_t is just a humble float +// +typedef float feedRate_t; + +// Conversion macros +#define MMM_TO_MMS(MM_M) feedRate_t(float(MM_M) / 60.0f) +#define MMS_TO_MMM(MM_S) (float(MM_S) * 60.0f) + +// +// Coordinates structures for XY, XYZ, XYZE... +// + +// Helpers +#define _RECIP(N) ((N) ? 1.0f / float(N) : 0.0f) +#define _ABS(N) ((N) < 0 ? -(N) : (N)) +#define _LS(N) (N = (T)(uint32_t(N) << v)) +#define _RS(N) (N = (T)(uint32_t(N) >> v)) +#define FI FORCE_INLINE + +// Forward declarations +template<typename T> struct XYval; +template<typename T> struct XYZval; +template<typename T> struct XYZEval; + +typedef struct XYval<bool> xy_bool_t; +typedef struct XYZval<bool> xyz_bool_t; +typedef struct XYZEval<bool> xyze_bool_t; + +typedef struct XYval<char> xy_char_t; +typedef struct XYZval<char> xyz_char_t; +typedef struct XYZEval<char> xyze_char_t; + +typedef struct XYval<unsigned char> xy_uchar_t; +typedef struct XYZval<unsigned char> xyz_uchar_t; +typedef struct XYZEval<unsigned char> xyze_uchar_t; + +typedef struct XYval<int8_t> xy_int8_t; +typedef struct XYZval<int8_t> xyz_int8_t; +typedef struct XYZEval<int8_t> xyze_int8_t; + +typedef struct XYval<uint8_t> xy_uint8_t; +typedef struct XYZval<uint8_t> xyz_uint8_t; +typedef struct XYZEval<uint8_t> xyze_uint8_t; + +typedef struct XYval<int16_t> xy_int_t; +typedef struct XYZval<int16_t> xyz_int_t; +typedef struct XYZEval<int16_t> xyze_int_t; + +typedef struct XYval<uint16_t> xy_uint_t; +typedef struct XYZval<uint16_t> xyz_uint_t; +typedef struct XYZEval<uint16_t> xyze_uint_t; + +typedef struct XYval<int32_t> xy_long_t; +typedef struct XYZval<int32_t> xyz_long_t; +typedef struct XYZEval<int32_t> xyze_long_t; + +typedef struct XYval<uint32_t> xy_ulong_t; +typedef struct XYZval<uint32_t> xyz_ulong_t; +typedef struct XYZEval<uint32_t> xyze_ulong_t; + +typedef struct XYZval<volatile int32_t> xyz_vlong_t; +typedef struct XYZEval<volatile int32_t> xyze_vlong_t; + +typedef struct XYval<float> xy_float_t; +typedef struct XYZval<float> xyz_float_t; +typedef struct XYZEval<float> xyze_float_t; + +typedef struct XYval<feedRate_t> xy_feedrate_t; +typedef struct XYZval<feedRate_t> xyz_feedrate_t; +typedef struct XYZEval<feedRate_t> xyze_feedrate_t; + +typedef xy_uint8_t xy_byte_t; +typedef xyz_uint8_t xyz_byte_t; +typedef xyze_uint8_t xyze_byte_t; + +typedef xyz_long_t abc_long_t; +typedef xyze_long_t abce_long_t; +typedef xyz_ulong_t abc_ulong_t; +typedef xyze_ulong_t abce_ulong_t; + +typedef xy_float_t xy_pos_t; +typedef xyz_float_t xyz_pos_t; +typedef xyze_float_t xyze_pos_t; + +typedef xy_float_t ab_float_t; +typedef xyz_float_t abc_float_t; +typedef xyze_float_t abce_float_t; + +typedef ab_float_t ab_pos_t; +typedef abc_float_t abc_pos_t; +typedef abce_float_t abce_pos_t; + +// External conversion methods +void toLogical(xy_pos_t &raw); +void toLogical(xyz_pos_t &raw); +void toLogical(xyze_pos_t &raw); +void toNative(xy_pos_t &raw); +void toNative(xyz_pos_t &raw); +void toNative(xyze_pos_t &raw); + +// +// XY coordinates, counters, etc. +// +template<typename T> +struct XYval { + union { + struct { T x, y; }; + struct { T a, b; }; + T pos[2]; + }; + FI void set(const T px) { x = px; } + FI void set(const T px, const T py) { x = px; y = py; } + FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } + FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; } + FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; } + #if XYZE_N > XYZE + FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; } + #endif + FI void reset() { x = y = 0; } + FI T magnitude() const { return (T)sqrtf(x*x + y*y); } + FI operator T* () { return pos; } + FI operator bool() { return x || y; } + FI XYval<T> copy() const { return *this; } + FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; } + FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; } + FI XYval<int16_t> asInt() const { return { int16_t(x), int16_t(y) }; } + FI XYval<int32_t> asLong() { return { int32_t(x), int32_t(y) }; } + FI XYval<int32_t> asLong() const { return { int32_t(x), int32_t(y) }; } + FI XYval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; } + FI XYval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; } + FI XYval<float> asFloat() { return { float(x), float(y) }; } + FI XYval<float> asFloat() const { return { float(x), float(y) }; } + FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; } + FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; } + FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; } + FI operator XYZval<T>() { return { x, y }; } + FI operator XYZval<T>() const { return { x, y }; } + FI operator XYZEval<T>() { return { x, y }; } + FI operator XYZEval<T>() const { return { x, y }; } + FI T& operator[](const int i) { return pos[i]; } + FI const T& operator[](const int i) const { return pos[i]; } + FI XYval<T>& operator= (const T v) { set(v, v ); return *this; } + FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; } + FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; } + FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator- (const XYval<T> &rs) { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator* (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator* (const XYval<T> &rs) { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator/ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator/ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator+ (const XYZval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator+ (const XYZval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator- (const XYZval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator- (const XYZval<T> &rs) { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator* (const XYZval<T> &rs) const { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator* (const XYZval<T> &rs) { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator/ (const XYZval<T> &rs) const { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator/ (const XYZval<T> &rs) { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator+ (const XYZEval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator+ (const XYZEval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYval<T> operator- (const XYZEval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator- (const XYZEval<T> &rs) { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYval<T> operator* (const XYZEval<T> &rs) const { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator* (const XYZEval<T> &rs) { XYval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYval<T> operator/ (const XYZEval<T> &rs) const { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator/ (const XYZEval<T> &rs) { XYval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYval<T> operator* (const float &v) const { XYval<T> ls = *this; ls.x *= v; ls.y *= v; return ls; } + FI XYval<T> operator* (const float &v) { XYval<T> ls = *this; ls.x *= v; ls.y *= v; return ls; } + FI XYval<T> operator* (const int &v) const { XYval<T> ls = *this; ls.x *= v; ls.y *= v; return ls; } + FI XYval<T> operator* (const int &v) { XYval<T> ls = *this; ls.x *= v; ls.y *= v; return ls; } + FI XYval<T> operator/ (const float &v) const { XYval<T> ls = *this; ls.x /= v; ls.y /= v; return ls; } + FI XYval<T> operator/ (const float &v) { XYval<T> ls = *this; ls.x /= v; ls.y /= v; return ls; } + FI XYval<T> operator/ (const int &v) const { XYval<T> ls = *this; ls.x /= v; ls.y /= v; return ls; } + FI XYval<T> operator/ (const int &v) { XYval<T> ls = *this; ls.x /= v; ls.y /= v; return ls; } + FI XYval<T> operator>>(const int &v) const { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; } + FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; } + FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; } + FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; } + FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } + FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } + FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } + FI XYval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; return *this; } + FI XYval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } + FI XYval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } + FI XYval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; return *this; } + FI XYval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } + FI XYval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } + FI XYval<T>& operator*=(const float &v) { x *= v; y *= v; return *this; } + FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; } + FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; } + FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; } + FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; } + FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; } + FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; } + FI bool operator==(const XYval<T> &rs) const { return x == rs.x && y == rs.y; } + FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y; } + FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y; } + FI bool operator!=(const XYval<T> &rs) { return !operator==(rs); } + FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); } + FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); } + FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); } + FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); } + FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); } + FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } + FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; } +}; + +// +// XYZ coordinates, counters, etc. +// +template<typename T> +struct XYZval { + union { + struct { T x, y, z; }; + struct { T a, b, c; }; + T pos[3]; + }; + FI void set(const T px) { x = px; } + FI void set(const T px, const T py) { x = px; y = py; } + FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } + FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; } + FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } + FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; } + FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; } + #if XYZE_N > XYZE + FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; z = arr[2]; } + #endif + FI void reset() { x = y = z = 0; } + FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); } + FI operator T* () { return pos; } + FI operator bool() { return z || x || y; } + FI XYZval<T> copy() const { XYZval<T> o = *this; return o; } + FI XYZval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; } + FI XYZval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; } + FI XYZval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; } + FI XYZval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; } + FI XYZval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; } + FI XYZval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; } + FI XYZval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; } + FI XYZval<float> asFloat() { return { float(x), float(y), float(z) }; } + FI XYZval<float> asFloat() const { return { float(x), float(y), float(z) }; } + FI XYZval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; } + FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; } + FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; } + FI operator XYval<T>&() { return *(XYval<T>*)this; } + FI operator const XYval<T>&() const { return *(const XYval<T>*)this; } + FI operator XYZEval<T>() const { return { x, y, z }; } + FI T& operator[](const int i) { return pos[i]; } + FI const T& operator[](const int i) const { return pos[i]; } + FI XYZval<T>& operator= (const T v) { set(v, v, v ); return *this; } + FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; } + FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; } + FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } + FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } + FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } + FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; } + FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } + FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } + FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } + FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; } + FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; } + FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; } + FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; } + FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; } + FI XYZval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } + FI XYZval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } + FI XYZval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } + FI XYZval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; } + FI XYZval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } + FI XYZval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } + FI XYZval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } + FI XYZval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } + FI XYZval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } + FI XYZval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } + FI XYZval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } + FI XYZval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } + FI XYZval<T>& operator*=(const float &v) { x *= v; y *= v; z *= v; return *this; } + FI XYZval<T>& operator*=(const int &v) { x *= v; y *= v; z *= v; return *this; } + FI XYZval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); return *this; } + FI XYZval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); return *this; } + FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; } + FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); } + FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; } + FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); } + FI XYZval<T> operator-() { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; } + FI const XYZval<T> operator-() const { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; } +}; + +// +// XYZE coordinates, counters, etc. +// +template<typename T> +struct XYZEval { + union { + struct{ T x, y, z, e; }; + struct{ T a, b, c; }; + T pos[4]; + }; + FI void reset() { x = y = z = e = 0; } + FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z + e*e); } + FI operator T* () { return pos; } + FI operator bool() { return e || z || x || y; } + FI void set(const T px) { x = px; } + FI void set(const T px, const T py) { x = px; y = py; } + FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; } + FI void set(const T px, const T py, const T pz, const T pe) { x = px; y = py; z = pz; e = pe; } + FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; } + FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; } + FI void set(const XYZval<T> pxyz) { x = pxyz.x; y = pxyz.y; z = pxyz.z; } + FI void set(const XYval<T> pxy, const T pz, const T pe) { x = pxy.x; y = pxy.y; z = pz; e = pe; } + FI void set(const XYval<T> pxy, const XYval<T> pze) { x = pxy.x; y = pxy.y; z = pze.z; e = pze.e; } + FI void set(const XYZval<T> pxyz, const T pe) { x = pxyz.x; y = pxyz.y; z = pxyz.z; e = pe; } + FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } + FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; } + FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; } + #if XYZE_N > XYZE + FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; } + #endif + FI XYZEval<T> copy() const { return *this; } + FI XYZEval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(e)) }; } + FI XYZEval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; } + FI XYZEval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; } + FI XYZEval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; } + FI XYZEval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; } + FI XYZEval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; } + FI XYZEval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; } + FI XYZEval<float> asFloat() { return { float(x), float(y), float(z), float(e) }; } + FI XYZEval<float> asFloat() const { return { float(x), float(y), float(z), float(e) }; } + FI XYZEval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(e) }; } + FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; } + FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; } + FI operator XYval<T>&() { return *(XYval<T>*)this; } + FI operator const XYval<T>&() const { return *(const XYval<T>*)this; } + FI operator XYZval<T>&() { return *(XYZval<T>*)this; } + FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; } + FI T& operator[](const int i) { return pos[i]; } + FI const T& operator[](const int i) const { return pos[i]; } + FI XYZEval<T>& operator= (const T v) { set(v, v, v, v); return *this; } + FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; } + FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; } + FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } + FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; } + FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } + FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } + FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; } + FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; } + FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; } + FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; } + FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; } + FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; } + FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; } + FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; } + FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; } + FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; } + FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; } + FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; } + FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } + FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } + FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } + FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; } + FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } + FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } + FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } + FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; } + FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; } + FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; } + FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; } + FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; } + FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; } + FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; } + FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; } + FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; } + FI XYZEval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; } + FI XYZEval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; } + FI XYZEval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; } + FI XYZEval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; } + FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; e += rs.e; return *this; } + FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; e -= rs.e; return *this; } + FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; e *= rs.e; return *this; } + FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; e /= rs.e; return *this; } + FI XYZEval<T>& operator*=(const T &v) { x *= v; y *= v; z *= v; e *= v; return *this; } + FI XYZEval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); _RS(e); return *this; } + FI XYZEval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); _LS(e); return *this; } + FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; } + FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); } + FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; } + FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); } + FI XYZEval<T> operator-() { return { -x, -y, -z, -e }; } + FI const XYZEval<T> operator-() const { return { -x, -y, -z, -e }; } +}; + +#undef _RECIP +#undef _ABS +#undef _LS +#undef _RS +#undef FI + +const xyze_char_t axis_codes { 'X', 'Y', 'Z', 'E' }; +#define XYZ_CHAR(A) ((char)('X' + A)) diff --git a/Marlin/src/core/utility.cpp b/Marlin/src/core/utility.cpp new file mode 100644 index 0000000..f999568 --- /dev/null +++ b/Marlin/src/core/utility.cpp @@ -0,0 +1,177 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ + +#include "utility.h" + +#include "../MarlinCore.h" +#include "../module/temperature.h" + +void safe_delay(millis_t ms) { + while (ms > 50) { + ms -= 50; + delay(50); + thermalManager.manage_heater(); + } + delay(ms); + thermalManager.manage_heater(); // This keeps us safe if too many small safe_delay() calls are made +} + +// A delay to provide brittle hosts time to receive bytes +#if ENABLED(SERIAL_OVERRUN_PROTECTION) + + #include "../gcode/gcode.h" // for set_autoreport_paused + + void serial_delay(const millis_t ms) { + const bool was = gcode.set_autoreport_paused(true); + safe_delay(ms); + gcode.set_autoreport_paused(was); + } +#endif + +#if ENABLED(DEBUG_LEVELING_FEATURE) + + #include "../module/probe.h" + #include "../module/motion.h" + #include "../module/stepper.h" + #include "../libs/numtostr.h" + #include "../feature/bedlevel/bedlevel.h" + + void log_machine_info() { + SERIAL_ECHOLNPGM("Machine Type: " + TERN_(DELTA, "Delta") + TERN_(IS_SCARA, "SCARA") + TERN_(IS_CORE, "Core") + TERN_(MARKFORGED_XY, "MarkForged") + TERN_(IS_CARTESIAN, "Cartesian") + ); + + SERIAL_ECHOLNPGM("Probe: " + TERN_(PROBE_MANUALLY, "PROBE_MANUALLY") + TERN_(NOZZLE_AS_PROBE, "NOZZLE_AS_PROBE") + TERN_(FIX_MOUNTED_PROBE, "FIX_MOUNTED_PROBE") + TERN_(HAS_Z_SERVO_PROBE, TERN(BLTOUCH, "BLTOUCH", "SERVO PROBE")) + TERN_(TOUCH_MI_PROBE, "TOUCH_MI_PROBE") + TERN_(Z_PROBE_SLED, "Z_PROBE_SLED") + TERN_(Z_PROBE_ALLEN_KEY, "Z_PROBE_ALLEN_KEY") + TERN_(SOLENOID_PROBE, "SOLENOID_PROBE") + TERN(PROBE_SELECTED, "", "NONE") + ); + + #if HAS_BED_PROBE + + #if !HAS_PROBE_XY_OFFSET + SERIAL_ECHOPAIR("Probe Offset X0 Y0 Z", probe.offset.z, " ("); + #else + SERIAL_ECHOPAIR_P(PSTR("Probe Offset X"), probe.offset_xy.x, SP_Y_STR, probe.offset_xy.y, SP_Z_STR, probe.offset.z); + if (probe.offset_xy.x > 0) + SERIAL_ECHOPGM(" (Right"); + else if (probe.offset_xy.x < 0) + SERIAL_ECHOPGM(" (Left"); + else if (probe.offset_xy.y != 0) + SERIAL_ECHOPGM(" (Middle"); + else + SERIAL_ECHOPGM(" (Aligned With"); + + if (probe.offset_xy.y > 0) + serialprintPGM(ENABLED(IS_SCARA) ? PSTR("-Distal") : PSTR("-Back")); + else if (probe.offset_xy.y < 0) + serialprintPGM(ENABLED(IS_SCARA) ? PSTR("-Proximal") : PSTR("-Front")); + else if (probe.offset_xy.x != 0) + SERIAL_ECHOPGM("-Center"); + + SERIAL_ECHOPGM(" & "); + + #endif + + serialprintPGM(probe.offset.z < 0 ? PSTR("Below") : probe.offset.z > 0 ? PSTR("Above") : PSTR("Same Z as")); + SERIAL_ECHOLNPGM(" Nozzle)"); + + #endif + + #if HAS_ABL_OR_UBL + SERIAL_ECHOPGM("Auto Bed Leveling: " + TERN_(AUTO_BED_LEVELING_LINEAR, "LINEAR") + TERN_(AUTO_BED_LEVELING_BILINEAR, "BILINEAR") + TERN_(AUTO_BED_LEVELING_3POINT, "3POINT") + TERN_(AUTO_BED_LEVELING_UBL, "UBL") + ); + + if (planner.leveling_active) { + SERIAL_ECHOLNPGM(" (enabled)"); + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + if (planner.z_fade_height) + SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height); + #endif + #if ABL_PLANAR + SERIAL_ECHOPGM("ABL Adjustment X"); + LOOP_XYZ(a) { + const float v = planner.get_axis_position_mm(AxisEnum(a)) - current_position[a]; + SERIAL_CHAR(' ', XYZ_CHAR(a)); + if (v > 0) SERIAL_CHAR('+'); + SERIAL_DECIMAL(v); + } + #else + #if ENABLED(AUTO_BED_LEVELING_UBL) + SERIAL_ECHOPGM("UBL Adjustment Z"); + const float rz = ubl.get_z_correction(current_position); + #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) + SERIAL_ECHOPGM("ABL Adjustment Z"); + const float rz = bilinear_z_offset(current_position); + #endif + SERIAL_ECHO(ftostr43sign(rz, '+')); + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + if (planner.z_fade_height) { + SERIAL_ECHOPAIR(" (", ftostr43sign(rz * planner.fade_scaling_factor_for_z(current_position.z), '+')); + SERIAL_CHAR(')'); + } + #endif + #endif + } + else + SERIAL_ECHOLNPGM(" (disabled)"); + + SERIAL_EOL(); + + #elif ENABLED(MESH_BED_LEVELING) + + SERIAL_ECHOPGM("Mesh Bed Leveling"); + if (planner.leveling_active) { + SERIAL_ECHOLNPGM(" (enabled)"); + SERIAL_ECHOPAIR("MBL Adjustment Z", ftostr43sign(mbl.get_z(current_position), '+')); + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + if (planner.z_fade_height) { + SERIAL_ECHOPAIR(" (", ftostr43sign( + mbl.get_z(current_position, planner.fade_scaling_factor_for_z(current_position.z)), '+' + )); + SERIAL_CHAR(')'); + } + #endif + } + else + SERIAL_ECHOPGM(" (disabled)"); + + SERIAL_EOL(); + + #endif // MESH_BED_LEVELING + } + +#endif // DEBUG_LEVELING_FEATURE diff --git a/Marlin/src/core/utility.h b/Marlin/src/core/utility.h new file mode 100644 index 0000000..645a4be --- /dev/null +++ b/Marlin/src/core/utility.h @@ -0,0 +1,79 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <https://www.gnu.org/licenses/>. + * + */ +#pragma once + +#include "../inc/MarlinConfigPre.h" +#include "../core/types.h" +#include "../core/millis_t.h" + +// Delay that ensures heaters and watchdog are kept alive +void safe_delay(millis_t ms); + +#if ENABLED(SERIAL_OVERRUN_PROTECTION) + void serial_delay(const millis_t ms); +#else + inline void serial_delay(const millis_t) {} +#endif + +#if GRID_MAX_POINTS_X && GRID_MAX_POINTS_Y + + // 16x16 bit arrays + template <int W, int H> + struct FlagBits { + typename IF<(W>8), uint16_t, uint8_t>::type bits[H]; + void fill() { memset(bits, 0xFF, sizeof(bits)); } + void reset() { memset(bits, 0x00, sizeof(bits)); } + void unmark(const uint8_t x, const uint8_t y) { CBI(bits[y], x); } + void mark(const uint8_t x, const uint8_t y) { SBI(bits[y], x); } + bool marked(const uint8_t x, const uint8_t y) { return TEST(bits[y], x); } + inline void unmark(const xy_int8_t &xy) { unmark(xy.x, xy.y); } + inline void mark(const xy_int8_t &xy) { mark(xy.x, xy.y); } + inline bool marked(const xy_int8_t &xy) { return marked(xy.x, xy.y); } + }; + + typedef FlagBits<GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y> MeshFlags; + +#endif + +#if ENABLED(DEBUG_LEVELING_FEATURE) + void log_machine_info(); +#else + #define log_machine_info() NOOP +#endif + +template<typename T> +class restorer { + T& ref_; + T val_; +public: + restorer(T& perm) : ref_(perm), val_(perm) {} + restorer(T& perm, T temp_val) : ref_(perm), val_(perm) { perm = temp_val; } + ~restorer() { restore(); } + inline void restore() { ref_ = val_; } +}; + +#define REMEMBER(N,X,V...) restorer<__typeof__(X)> restorer_##N(X, ##V) +#define RESTORE(N) restorer_##N.restore() + +// Converts from an uint8_t in the range of 0-255 to an uint8_t +// in the range 0-100 while avoiding rounding artifacts +constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; } |